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Abstract: 

Most regional empirical analyses are limited by the lack of data. Researches 
have to use information that is structured in administrative or political regions which 
are not always economically meaningful. Any aggregation of a territory in regions in an 
economic sense requires data on the main economic variables at the level of basic 
spatial units, such as GDP at a local level. A methodology is proposed in this paper to 
approximate local GDP values using entropy econometrics which can be defined as an 
exercise of ecological inference. In addition to the analysis of the main characteristics 
of the proposed techniques, the paper illustrates how the procedure works taking as 
an empirical application the estimation of income for Spanish municipalities according 
to their size. As an example of the possibilities opened up by this methodology, a 
regional classification based on the relevance of city size, which allows us to measure 
the relevance of agglomeration economics, is empirically applied to the Spanish case 
obtaining some interesting first results.  

Keywords: urban size and income relationship; entropy econometrics, ecological 
inference and Spain. 
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1. Introduction: Why is it Relevant to Obtain Local Data? 

With some relevant exceptions, such as the USA, data at a local level are not 
normally available. The most important economic data, like GDP, are usually presented 
according to the administrative or political divisions of national territories with not 
very extensive spatial desegregation. If we use this information, the empirical 
possibilities of our studies are clearly limited. However, if we are able to use a proper 
delimitation of Regions, with an economic meaning taking in account a particular 
theoretical framework, specific objective or hypothesis contrast, the analysis will be 
clear and we shall be able to obtain more relevant conclusions (Behrens and Thisse, 
2007).  

For instance, one of the most relevant concepts from the urban economic point 
of view are agglomeration economies and diseconomies and their effect on location 
decisions, economic structure and growth between larger and smaller cities 
(Henderson, J.V. and Thisse, J.F., 2004). Agglomeration economies could be 
approximated by the size of the main urban area of a particular region. As XXX shows, 
a certain degree of international regularity exist linking the size of the main city with 
the average GDP per capita in the area. However, these regularities were tested only 
for some countries and for some specific cities in which local information is available. 
In the majority of cases, there is not sufficient desegregated information to conduct 
this type of empirical research. 

Another relevant, more classical concept in regional studies is the importance 
of distance and how transportation costs can affect business localization. Through 
these microeconomic decisions, the macroeconomic structure could be transformed 
and hence the levels of GDP per capita could change. In the literature, all these ideas 
are typically tested with employment data, which are usually available at a local level. 
However, the final test with respect to the changes in income linked to the position of 
each area is not possible in most cases due to this general lack of information at a local 
level.  

We can likewise raise other questions similar to these, such as: How we can 
evaluate the impact of regional policy at a local level? How we can test the relevance 
of a new infrastructure? How we can compare different cities and the economic 
efficiency of the different models of urban growth? The list of relevant questions could 
be considerably extended while always having to address the basic problem in the 
majority of cases of lack of data at a local level, especially GDP.  

The objective of this paper is to develop a useful approach to obtain this 
information based on entropy econometrics. The technique could provide us with 
information at a local level organized according to the size of the main urban area, 
which is especially interesting from the point of view of most of the models, and for 
the analysis of regional and urban economies. Our aim is to propose a procedure that 
could be applied in different scenarios with minor adaptations. In this first step, 
however, we test the possibilities of the approach by applying it to the Spanish case.  
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The paper is divided into three further sections. The next section discusses the 
entropy econometrics solution to an ecological inference problem and presents our 
methodological proposal. Section 3 presents an empirical application to Spain for 2001 
and discusses the results obtained on applying a typical meaningful set of Regions. The 
main conclusions and possible further lines of research complete the paper. 
Additionally, an appendix reports the outcomes of a Monte Carlo experiment that tests 
the reliability of the empirical results.  

 

2. The methodology: Ecological Inference with Entropy Econometrics. 
 
2.1. The Maximum Entropy (ME) and Cross Entropy (CE) solutions to pure inverse 
problems. 

In this section, the basics of Entropy Econometrics will be introduced for estimate 
unknown probabilities in the context of pure inverse problems. More extensive 
introductions can be found in Kapur and Kesavan (1992), Golan et al. (1996) or, much 
more recently, Golan (2006). 

Traditionally, probability has been used as a measure of the uncertainty about 
an event. Let us assume that this event can take K possible outcomes E1,E2,...,EK with 
the respective distribution of probabilities ࢖ = ,ଵ݌] ,ଶ݌ . . , ∑ ௄] such that݌ ௜௄݌

௜ୀଵ = 1. 
Following the formulation of Shannon (1948), the entropy of this distribution ࢞࢖will 
be: 

(࢖)ܪ = −෍݌௜݈݊݌௜

௄

௜ୀଵ

 (1) 

that takes its maximum value when ࢖ is a uniform distribution (݌௜ = ଵ
௄

;  ݅ =
1, . .  This entropy measure gives the uncertainty of the outcomes of the event, but .(ܭ,
this univariate framework can be extended to situations where we are interested in 
the study of bidimensional distributions given by the pair of variables (x,y), where 
variable x can take K different values {ݔଵ,ݔଶ, … ,  ௄} and variable y can take T valuesݔ
,ଵݕ} ,ଶݕ … ,  In this situation, the joint probability of a pair of random observations .{்ݕ
,௜ݔ) ௜௝݌ ௝) will be denoted asݕ  and the Shannon’s entropy measure for the ܭ × ܶ 
possible outcomes will be: 

(ࡼ)ܪ = −෍෍݌௜௝݈݊݌௜௝

்

௝ୀଵ

௄

௜ୀଵ

 (2) 

Again, the entropy measure reaches its maximum when ࡼ is uniform. Apart 
from measuring the uncertainty associated to a random process, Shannon’s entropy 
can be used for recovering an unknown probability distribution form partial or 
incomplete data.  

We will base our explanations on the matrix-balancing problem depicted in 
Golan (2006, page 105), where the goal is to fill the (unknown) cells of a matrix using 
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the information that is contained in the aggregate data of the row and column sums. 
Graphically, the point of departure of our problem is a matrix like Table 1. 

Table 1: Known and unknown data in a matrix balancing problem. 

 ܶ·ݖ … ݆·ݖ … 1·ݖ 
 1ܶݖ … 1݆ݖ … 11ݖ ·1ݖ
… …  …  … 
 ܶ݅ݖ … ݆݅ݖ … 1݅ݖ ·݅ݖ
… …  …  … 
݆ܭݖ … 1ܭݖ ·ܭݖ  ܶܭݖ … 

The ݖ௜௝  elements of the matrix are the unknown quantities we would like to 
estimate, where ∑ ௜௝ݖ = ்·௜ݖ

௝ୀଵ , ∑ ௜௝ݖ = ௝·ݖ
௄
௜ୀଵ , and ∑ ∑ ௜௝ݖ = ்ݖ

௝ୀଵ
௄
௜ୀଵ . These elements 

can be expressed as sets of (column) probability distributions, simply dividing the 
quantities of the matrix by the corresponding column sums, ݖ·௝. Note that. In such a 
case, the previous matrix can be rewritten in terms of a new matrix ࡼ that is composed 
by a set of T probability distributions (Table 2). 

Table 2: The matrix balancing problem in terms of probabilities. 

 ܶݕ … ݆ݕ … 1ݕ 

 1ܶ݌ … 1݆݌ … 11݌ 1ݔ
… …  …  … 
 ܶ݅݌ … ݆݅݌ … 1݅݌ ݅ݔ
… …  …  … 
 ܶܭ݌ … ݆ܭ݌ … 1ܭ݌ ܭݔ

 Where the ݌௜௝  are defined as the proportions ݏ′
௭೔ೕ
௭·ೕ

, and the new row and 

column margins as ݔ௜ = ௭೔·
௓

 and ݕ௝ = ௭·ೕ

௓
 respectively. Consequently, the followings 

equalities are fulfilled by the ݌௜௝  elements1: 

෍݌௜௝ = 1
௄

௜ୀଵ

;  ∀݆ = 1, … ,ܶ (3) 

෍݌௜௝ݕ௝ = ௜ݔ

்

௝ୀଵ

;  ∀݅ = 1, …  (4) ܭ,

These two sets of equations reflect all we know about the elements of matrix ࡼ. 
Equation (3) shows the cross-relationship between the (unknown) ݌௜௝′ݏ in the matrix 
and the (known) sums of each row and column. Additionally, equation (4) indicates 

                                                

1 Note that in such a case, these ݌௜௝elements can be seen as conditional probabilities to each 
column. 
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that the ݌௜௝  can be viewed as (column) probability distributions. Note that we have ݏ′
only ܭ + ܶ pieces of information to estimate the ܭ × ܶ elements of matrix ࡼ, which 
makes the problem ill-posed. In such a situation, usually called a pure linear inverse 
problem, the Maximum Entropy (ME) principle can be applied to recover the unknown 
௜௝݌  probabilities. This principle is based on the selection of the probability distribution 
that maximizes (5) among all the feasible probability distributions that fulfil (6) and (7). 
So, the following constrained maximization problem is posed: 

Max
ࡼ

(ࡼ)ܪ = −෍෍݌௜௝݈݊݌௜௝

்

௝ୀଵ

௄

௜ୀଵ

 (5) 

Subject to: 

෍݌௜௝ݕ௝ = ௜ݔ

்

௝ୀଵ

;  ∀݅ = 1, …  (6) ܭ,

෍݌௜௝ = 1
௄

௜ୀଵ

;  ∀݆ = 1, … ,ܶ (7) 

In this problem the equations (7) are simply normalization constraints that 
guarantee that the estimated probabilities sum to one, and equations (6) ensure that 
the recovered distributions of probabilities are compatible with the aggregate data of 
 :at all K observations. The Lagrangian function for such a problem will be ࢞

ܮ = −෍෍݈݊݌௜௝

்

௝ୀଵ

௄

௜ୀଵ

+ ෍௜

௄

௜ୀଵ

቎ݔ௜ −෍݌௜௝ݕ௝

்

௝ୀଵ

቏ + ෍ߤ௝

்

௝ୀଵ

൥1 −෍݌௜௝

௄

௜ୀଵ

൩ (8) 

And the solutions (taking into account the first-order conditions) are: 

௜௝̂݌ =
෠ൣ݌ݔ݁ ௜ݕ௝൧

∑ ෠ൣ݌ݔ݁ ௜ݕ௝൧௄
௜ୀଵ

;  ∀݅ = 1, ;ܭ… ݆ = 1, … ,ܶ (9) 

where ෠ ௜ are the Lagrangian multipliers associated with constraints (6).  

Alternatively to this case, it might be also possible a situation where, in addition 
to the information contained in the aggregate data, we have available a set of prior 
probabilities ݍ௜௝. In other words, we want to transform an a priori probability matrix ࡽ 
into a posterior matrix ࡼ that is consistent with the vectors ࢞ and ࢟. This type of 
problem is frequent in some fields of economic research: for example in input-output 
analysis the researchers often must update an input-output matrix of coefficients to 
make it match with actual known row and column sums, using as a priori information 
the data collected in a previous table. 

The solution to this type of problems is obtained by minimizing a divergence 
measure with the prior probability matrix ࡽsubject to the set of constraints (6) and (7). 
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The ME problem is therefore transformed into a so-called Cross-Entropy (CE) problem, 
which can be written in the following terms: 

Min
ࡼ
(ࡽ‖ࡼ)ܦ = ෍෍݌௜௝

்

௝ୀଵ

௄

௜ୀଵ

݈݊ ቆ
௜௝݌
௜௝ݍ
ቇ (10) 

Subject to the same restrictions given by the set of equations (6) and (7). The 
divergence measure (ࡽ‖ࡼ)ܦ is the Kullback-Liebler entropy divergence between the 
posterior and prior distributions. The Lagrangian function for the CE problem is: 

ܮ = (ࡽ‖ࡼ)ܦ + ෍ ௜

௄

௜ୀଵ

቎ݔ௜ −෍݌௜௝ݕ௝

்

௝ୀଵ

቏ + ෍ߤ௝

்

௝ୀଵ

൥1 −෍݌௜௝

௄

௜ୀଵ

൩ (11) 

And the solutions are: 

෤௜௝݌ =
෨ൣ݌ݔ௜௝݁ݍ ௜ݕ௝൧

∑ ෨ൣ݌ݔ௜௝݁ݍ ௜ݕ௝൧௄
௜ୀଵ

;  ∀݅ = 1, ;ܭ… ݆ = 1, … ,ܶ (12) 

The CE estimation procedure can be seen as an extension of the ME principle 
(or alternatively the ME can be considered as a particular case of the CE procedure), 
given that the solutions of both approaches are the same (̂݌௜௝ =  ෤௜௝) when the ܶ a݌
priori probability distribution contained in ࡽ are all uniform. In other words, the ME 
solutions are obtained by minimizing the Kullback-Liebler divergence (ࡽ‖ࡼ)ܦ 
between the unknown ݌௜௝  and the probabilities ݍ௜௝ = ଵ

௄
 ∀݅ = 1, . .  .ܭ,

2.2. The ME-CE approach in the presence of noisy data. 

The entropy solutions provided above to recover unknown probability 
distributions can be applied also to situations different from the pure inverse 
problems. Consider a case where, for example, the observations of vector x are 
“contaminated” by some measurement error; or, alternatively, a situation where the x 
values are affected by some uncontrolled factor other than the pure linear relationship 
with y. In both cases, the equation (13) that relates ࢞ and ࢟ will be affected by the 
presence of a random disturbance ࣕ in the following terms:  

݅ݔ = ෍݆ݕ݆݅݌ + ݅ߝ
ܶ

݆=1
;  ∀݅ = 1, …  (13) ܭ,

Or, more generally: 

࢞ = ࢟ࡼ + ࣕ (14) 

Entropy econometrics can also deal with the estimations of the unknown ݌௜௝  
elements in such situations, which is the typical specification of a linear econometric 
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model2. A first step to estimate the ݌௜௝  probabilities is the reparametrization of the ߝ௜  
terms, given that the CE formulation is designed for dealing with elements that behave 
as proper probability distributions (condition fulfilled by the ݌௜௝  .(ݏ′௜ߝ but not by the ݏ′
This reparametrization allows us to generalize the use of the CE technique 
(Generalized Cross Entropy or GCE hereafter) to these familiar linear models.   

Oppositely to other estimation techniques, GCE does not require rigid 
assumptions about a specific probability distribution function of the stochastic 
component, but it still is necessary to make some assumptions. Basically, we represent 
our uncertainty about the realizations of vector ࢿ treating each element ߝ௜  as a 
discrete random variable with ܬ ≥ 2 possible outcomes contained in a convex set 
′࢜ = ൛ݒଵ, …  .௜ߝ ௃ൟ, which for the sake of simplicity is assumed as common for all theݒ,
We also assume that these possible realizations are symmetric around zero (−ݒଵ =
 ௃). The traditional way of fixing the upper and lower limits of this set is to apply theݒ
three-sigma rule (see Pukelsheim, 1994). Under these conditions, each element ߝ௜  can 
be defined as: 

௜ߝ = ෍ݓ௜௛ݒ௛

௃

௛ୀଵ

;  ∀݅ = 1, …  (15) ܭ,

Where ݓ௜௛  is the unknown probability of the outcome ݒ௛ for the observation i, 
which implies that ࣕ is assumed to have a mean ܧ[ࣕ] = 0 and a finite covariance 
matrix. From this reparametrization, equation (15) can be written as:   

௜ݔ = ෍݌௜௝ݕ௝ + ෍ݓ௜௛ݒ௛

௃

௛ୀଵ

; 
்

௝ୀଵ

 ∀݅ = 1, …  (16) ܭ,

Or, more generally: 

࢞ = ࢟ࡼ +  (17) ࢜ࢃ

Now we need also to estimate a (ܭ × for the (1 ࢃ matrix (ܬ ×  support vector (ܬ
 ૙ of a priori probabilities, the CE program given before can beࢃ From a matrix .′࢜
rewritten as a GCE in the following terms: 

Min
ࢃ,ࡼ

(૙ࢃ,ࡽ‖ࢃ,ࡼ)ܦ = ෍෍݌௜௝

்

௝ୀଵ

௄

௜ୀଵ

݈݊ ቆ
௜௝݌
௜௝ݍ
ቇ+ ෍෍ݓ௜௛

௃

௛ୀଵ

௄

௜ୀଵ

݈݊ ቆ
௜௛ݓ
௜௛଴ݓ

ቇ (18) 

Subject to: 

                                                
2 This section will focus only on the application of the CE techniques given that, as 
commented before, the ME solution can be seen as a particular case of the CE approach 
when ݍ௜௝ = ଵ

௄
 ∀݅ = 1, . .  .ܭ,
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௜ݔ = ෍݌௜௝ݕ௝ + ෍ݓ௜௛ݒ௛

௃

௛ୀଵ

; 
்

௝ୀଵ

 ∀݅ = 1, …  (19) ܭ,

෍݌௜௝ = 1
௄

௜ୀଵ

;  ∀݆ = 1, … ,ܶ (20) 

෍ݓ௜௛ = 1
௃

௛ୀଵ

;  ∀݅ = 1, …  (21) ܭ,

Note that this GCE program is the result of introducing in the pure inverse 
problem the estimation of the unknown probabilities ࢃcorresponding to the 
stochastic term ࣕ. The solutions of the GCE program are: 

෤௜௝݌ =
෨ൣ݌ݔ௜௝݁ݍ ௜ݕ௝൧

∑ ෨ൣ݌ݔ௜௝݁ݍ ௜ݕ௝൧௄
௜ୀଵ

;  ∀݅ = 1, ;ܭ… ݆ = 1, … ,ܶ (22) 

෥௜௛ݓ =
෨ൣ݌ݔ݁ ௜ݒ௛൧

∑ ෨ൣ݌ݔ݁ ௜ݒ௛൧
௃
௛ୀଵ

;  ∀݅ = 1, ;ܭ… ℎ = 1, … ,  (23) ܬ

Equation (22) presents an identical structure to (12) for the estimated ݌௜௝  
probabilities. Equation (23) shows the CE solution for the estimation of ݓ௜௛  when the a 
priori probabilities are fixed as uniform (ݓ௜௝଴ = ଵ

௃
 ∀ℎ = 1, . . ,  which is the natural ,(ܬ

(and most frequently applied) point of departure to reflect the high degree of 
uncertainty about ࣕ.   

2.3. Recovering individual characteristics from aggregate data: Ecological Inference 
based on CE-GCE techniques. 

The entropy-based estimation techniques outlined in the previous subsection 
can be directly applied to the field of Ecological Inference (EI), which can be roughly 
defined as the attempt to infer individual characteristics from aggregate information. 
Research in this area has grown enormously in recent years, given its usefulness in 
many academic disciplines of social science as well as in policy analysis. The 
foundations of EI were introduced in the seminal works by Duncan and Davis (1953) 
and Goodman (1953), whose techniques were the most prominent in the field for 
more than forty years, although the work of King (1997) supposed a substantial 
development by proposing a methodology that reconciled and extended previously 
adopted approaches. An extensive survey of recent contributions to the field can be 
found in King, Rosen and Tanner (2004).   

In fact, in one of the chapters of the aforementioned work, Judge et al. propose 
the use of information-based estimation techniques in the field of EI, although their 
proposal is made in a different context (the estimation of individual voters’ behavior 
from aggregate election data). Peeters and Chasco (2006) also combined entropy 
econometrics in the context with EI, but in a different way to that proposed in this 
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paper. Roughly speaking, they used GCE to estimate a weighted regression model that 
allows for recovering characteristics at a regional scale from information at a national 
level.    

To explain how the GCE technique can be applied in the context of EI, consider 
a geographical area (a country, for example) that can be divided in T smaller spatial 
units (regions). Besides this first geographical partition, suppose that another division 
is also possible in accordance with another characteristic. Consider that the second 
criterion applied for this additional partition is a classification of the municipalities that 
make up the country, obtaining K different types of municipalities. Within such a 
context, the objective would be to estimate how a variable is distributed among the 
regions according to the classification of municipalities, using aggregate data as 
information. Graphically, this estimation problem can be represented by a grid with 
the same structure as Table 2.  

Table 3: A spatial division across regions and type of municipality. 

  Regions 

… ଵݕ   … ௝ݕ ்ݕ  

Ty
pe

 o
f 

m
un

ic
ip

al
it

y 

… ଵଵ݌ ଵݔ ଵ௝݌  … ଵ்݌  

… …  …  …

… ௜ଵ݌ ௜ݔ ௜௝݌  … ௜்݌  

… …  …  …

… ௄ଵ݌ ௄ݔ ௄௝݌  … ௄்݌  

  

Each one of the ݌௜௝′ݏ is now defined as the (unknown) proportion of the 
variable that is allocated in the municipalities of type i situated in the region j, forming 
a (ܭ × ܶ) matrix ࡼ with T unknown probability distributions.  The (1 × ܶ) row vector y 
represents the regional proportions of the variable and the (ܭ × 1) column vector x 
shows the national allocation of the variable according to the type of municipality. 
Note that these two vectors contain the aggregate data existing for the researcher, 
which our EI estimation will be based on. If an a priori set of probability distributions ࡽ 
is also available, the cross entropy procedures outlined previously can be directly 
applied.  

Note that both the CE technique for pure inverse problem as well as a GCE 
program that include the presence of a random term are applicable in this context, and 
it is a decision to be made by the researcher to follow one specific approach. In the 
first case, we will assume that there is a pure linear relationship between the row and 
column margins of our matrix, and the following CE program would have to be solved: 
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Min
ࡼ
 (24) (ࡽ‖ࡼ)ܦ

Subject to: 

࢞ =  (25) ′࢟ࡼ 

ࡼࡷ′ࢋ =  (26) ࡷ′ࢋ

Where ࡷࢋ  stands for an appropriate (column) vector of ones. Alternatively, if it 
seems realistic the inclusion of a random term that affects the observations of vector 
x, it would be necessary to solve the following GCE program and estimate jointly 
matrices ࡼ and ࢃ: 

Min
ࢃ,ࡼ

 (27) (૙ࢃ,ࡽ‖ࢃ,ࡼ)ܦ

Subject to: 

࢞ = ′࢟ࡼ  +  (28) ࢜ࢃ

ࡼࡷ′ࢋ =  (29) ࡷ′ࢋ

ࡶࢋࢃ =  (30) ࡶࢋ

Being ࡶࢋ the corresponding column vector of ones. 

 
3. Estimating 2001 urban income in Spain according to city size. 
 
3.1. Estimation procedure. 

Spanish official data on income at a municipal level are not generally available (, 
so an estimation procedure is necessary.  

Spanish municipalities can be posed in similar terms to the matrix balancing 
problems described in previous sections. Spain is administratively divided in 50 
provinces for which data on income is available in the Regional Accounts annually 
elaborated by the Spanish Statistical Institute (INE). Additionally, from 1998 to 2004 
the INE also produced the Continuous Survey on Household Budgets (ECPF), where one 
can find information of income and expenditure characteristics from a quarterly 
sample of approximately 8.000 Spanish families3. Particularly interesting for our 
research, the longitudinal files containing the microdata provide annual information 
about the personal income distribution according to the type of municipality where 
the household lived at the time of being surveyed. Specifically, this municipal 
classification is as appear in Table 4. 

  

                                                
3 More detailed information on these surveys can be found in www.ine.es. 
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Table 4: Classification on the Spanish municipalities on the Continuous Survey 
on Household Budgets. 

Type of 
municipality Description 

m1 Capital city of the province (independently on its population) 
m2 Municipality with more than 100,000 inhabitants 
m3 Municipality with a population between 50,000 and  100,000 
m4 Municipality with a population between 20,000 and  50,000 
m5 Municipality with a population between 10,000 and  20,000 
m6 Municipality with less than 10,000 inhabitants 

Note that this partition of the Spanish municipalities does not correspond 
exactly with the population size given that the category “capital city” does not reflect 
exactly the population size. Even so, this classification can be seen as a good indicator 
of the spatial distribution of income according to the size of the municipalities, given 
that there is a little number of provinces (Asturias, Cadiz, Pontevedra and Toledo are 
the only exceptions) where the capital is smaller than some other city on the same 
province.  

The information sources described above allow for obtaining the row and 
column margins represented by the vectors x and y in Table 3. Vector x, with 
dimension (6 × 1), contains the proportion of income per type of municipality and the 
(1 × 50) vector y with the provincial proportions of income. From these aggregate 
data, we will apply the entropy-based estimation strategies explained in previous 
sections to recover the allocation of provincial income according to the type of 
municipality for 2001.  We have chosen this specific year because this is also the 
reference year of the most recent census elaborated in Spain4, which provides 
information for specifying a natural a priori distribution ࡽ based on the provincial 
distribution of labor per type of municipality. From this point of departure, two parallel 
estimation procedures have been applied. 

Let us first assume that we can pose a pure linear relationship between vectors 
x and y to solve the following CE problem: 

Min
ࡼ
(ࡽ‖ࡼ)ܦ = ෍෍݌௜௝

ହ଴

௝ୀଵ

଺

௜ୀଵ

݈݊ ቆ
௜௝݌
௜௝ݍ
ቇ (31) 

Subject to: 

௜ݔ = ෍݌௜௝ݕ௝

்

௝ୀଵ

;  ∀݅ = 1, … ,6 (32) 

                                                
4 For details about the Spanish Census, see http://www.ine.es/censo2001/infotec.htm.   
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෍݌௜௝ = 1
௄

௜ୀଵ

;  ∀݆ = 1, … ,50 (33) 

The solution to this CE program is reported in Table 5 for all the Spanish 
provinces. The income values have been obtained as the respective estimate of ݌௜௝  
multiplied by the total income of province j. Note also that, instead of showing the 
income value, the  estimates have been divided by the respective population sizes to 
provide results of income per capita (in thousands of Euros). The last column of the 
table, which is shaded in grey, shows the proportions of income per province. Similarly, 
the last row is shaded in grey as well, and contains the proportion of income per type 
of municipality. Note that these proportions correspond to vectors y and x 
respectively, the aggregate information used for the estimation, although they have 
been transposed from their usual position in previous sections in order to fit the tables 
into the size of the pages. 

Another possibility is to include a stochastic term in the linear model that 
relates ࢞ and ࢟ and transform the pure linear inverse relationship in a more general 
linear model. This can be justified by the fact that the observations of the proportions 
are obtained from samples, which implies the possibility that these observations might 
have been affected by some measurement error. In general, it may be unrealistic to 
assume that the ࢞ and ࢟ vectors are perfectly observed, so it seems plausible to 
consider a model like (17) with both systematic and stochastic components. It turns 
the CE problem into the following GCE program:  

Min
ࢃ,ࡼ

૙൯ࢃ,ࡽฮࢃ,ࡼ൫ܦ = ෍෍݌௜௝

ହ଴

௝ୀଵ

଺

௜ୀଵ

݈݊ ቆ
௜௝݌
௜௝ݍ
ቇ+ ෍෍ݓ௜௛

ଷ

௛ୀଵ

଺

௜ୀଵ

݈݊ ቆ
௜௛ݓ
௜௛଴ݓ

ቇ (34) 

Subject to: 

௜ݔ = ෍݌௜௝ݕ௝

்

௝ୀଵ

+ ෍ݓ௜௛ݒ௛

ଷ

௛ୀଵ

;  ∀݅ = 1, … ,6 (35) 

෍݌௜௝ = 1
௄

௜ୀଵ

;  ∀݆ = 1, … ,50 (36) 

෍ݓ௜௛ = 1
ଷ

௛ୀଵ

;  ∀݅ = 1, … ,6 (37) 

The support vector ࢜′ contains the possible values and it has ܬ = 3 elements 
centred on 0 and is defined as ࢜′ = ,ߙ−]  If we had perfect knowledge of the .[ߙ,0
variability present on x, a reasonable rule for ߙ is the three-standard deviation rule 
(Pukelsheim, 1994). However, given our incomplete knowledge, we will follow the 
proposal made in Golan et al. (1997), where the entropy econometrics techniques are 
applied to linear models with multinomial data on the dependent variable, and we will 
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use the sample variance of x as an estimate for ߙ. The a priori probabilities ࢃ૙ for the 
error have been fixed as uniform, as explained before. Table 6, which presents the 
same structure of rows and columns as Table 5, shows the solutions to this GCE 
estimation problem5. 

Note that the estimates reported on both tables are very similar, which 
suggests that the outcomes are relatively robust to changes in the specification of the 
estimation procedures. 

 

3.2. Discussion of the results. 
The results obtained for the Spanish case fit basic theoretical economic expectations. 
The highest estimates of GDP’s per capita are obtained for large urban areas, 
confirming the relevance of agglomeration economies: the bigger the city, the larger 
the GDP per capita. This is especially clear for the largest cities in the country. The 
differences between the two main metropolises (Madrid and Barcelona) and the rest 
of the municipalities, including other large cities, are noteworthy. Small cities and rural 
areas present lower GDP’s per capita with some exceptions for places located very 
close to a large metropolis.  

To be able to interpret and analyse these results, we can apply a typical 
classification of territory to these data based on the approaches of Coffey and Polèse 
(1988), Polèse and Champagne (1999), Polèse and Shearmur (2004) and Polèse, 
Rubiera and Shearmur (2007), which take into account size and distance effects 
(possibly the two most important effects in business localization and regional growth). 
First, we can distinguish all the spaces that can be considered large metropolises. All 
the aforementioned studies show a strong trend of higher growth rates, particularly in 
strategic economic sectors such as knowledge-intensive business services, in and 
around cities and, more specifically, in and around large metropolitan areas. We can 
then classify the remaining territories in terms of their distance to a large metropolis as 
central or peripheral areas. Central and peripheral areas could also be classified 
according to their size. As a result, we have five types of regions: (i) Metropolitan Areas 
(MA), (ii) Urban Central Areas (UCA), (iii) Urban Peripheral Areas (UPA), (iv) Rural 
Central Areas (RCA) and (v) Rural Peripheral Areas (RPA), taking in account the fact that 
UCA and UPA could be classified in different types according to their sizes.    

 

                                                
5 The blank cells in both tables correspond with a type of municipalities that does not exist 
in a specific province.  
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Table 5: CE estimates of income per type of municipality. 

(thousands €/person) 

 m1 m2 m3 m4 m5 m6 ࢟ 

Almeria 14.36  18.22 16.13 16.12 13.77 0.0123 

Cádiz  13.68 12.84 11.85 11.98 12.42 10.44 0.0207 

Cordoba 11.42   10.83 10.75 9.67 0.0122 

Granada  12.09  12.16 8.09 12.78 10.36 0.0134 

Huelva 14.00   12.55 13.18 11.81 0.0089 

Jaen 12.79  9.75 10.52 10.93 10.06 0.0103 

Málaga 13.19 12.74 5.84 13.84 11.19 10.71 0.0240 

Sevilla  16.24 12.20 11.21 7.19 10.56 10.52 0.0319 

Huesca 19.86    14.09 17.48 0.0053 

Teruel  20.34    19.78 15.51 0.0035 

Zaragoza 17.92    16.02 15.55 0.0222 

Asturias  16.75 14.26 13.36 11.88 12.76 13.76 0.0221 

Baleares 21.22   16.36 16.89 20.17 0.0258 

Las Palmas  15.89  14.76 15.95 14.76 18.33 0.0222 

Tenerife  14.21 14.61 14.68 12.58 15.68 14.62 0.0186 

Cantabria  15.87  14.34 16.39 15.46 15.69 0.0125 

Avila  14.90     11.87 0.0031 

Burgos 18.64   17.19  17.25 0.0093 

León 14.89  13.40 16.04 9.59 13.64 0.0100 

Palencia 15.63     14.51 0.0039 

Salamanca 14.59    13.34 12.63 0.0070 

Segovia  17.01     15.48 0.0035 

Soria  16.89     15.18 0.0021 

Valladolid  16.95   14.83 18.98 16.39 0.0124 

Zamora 13.23    12.61 10.81 0.0035 

Albacete  13.41   12.29 12.16 10.84 0.0067 

Ciudad Real  15.11  10.95 13.81 13.63 12.25 0.0093 

Cuenca 13.99    13.53 11.84 0.0037 

Guadalajara  16.04   17.31  12.51 0.0038 

Toledo  14.75  12.42  17.13 12.08 0.0104 

Barcelona 28.26 16.35 13.12 13.13 13.94 22.43 0.1423 

Girona  18.36   18.28 19.11 20.70 0.0173 

Lleida 20.86    19.95 19.75 0.0110 

Tarragona 22.10  19.71 19.96 19.71 20.66 0.0191 

Alicante 16.44 14.71 11.83 10.55 15.96 16.50 0.0322 

Castellon 19.14   18.00 18.80 17.55 0.0135 

Valencia 17.65  13.29 12.96 15.84 15.98 0.0523 

Badajoz  12.65  12.27 10.96 10.90 9.21 0.0103 

Cáceres 11.90   10.73 7.92 10.44 0.0064 

Coruña 14.46  12.07 13.31 12.39 12.95 0.0215 

Lugo 14.19    12.37 11.56 0.0066 

Orense 13.49    12.43 10.68 0.0060 

Pontevedra 13.80 12.98  10.90 14.14 12.60 0.0175 

Madrid 28.74 14.15 11.73 10.63 13.45 18.05 0.1779 

Murcia  14.96 12.19 13.90 13.13 12.96 12.24 0.0244 

Navarra 22.18   20.50 16.10 20.07 0.0172 

Alava 23.02    18.90 21.55 0.0097 

Guipúzcoa 22.09  20.00 20.30 20.40 21.97 0.0213 

Vizcaya 20.59  16.76 17.73 19.33 20.23 0.0318 
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La Rioja 18.96   17.74 17.42 17.39 0.0076 

  0.2115 0.1000 0.1159 0.0679 0.0804 0.4244 ′࢞

Table 6: GCE estimates of income per type of municipality. 

(thousands €/person) 

 m1 m2 m3 m4 m5 m6 ࢟ 

Almeria 14.34  18.28 16.17 16.13 13.74 0.0123 

Cádiz  13.63 12.81 11.89 12.01 12.42 10.40 0.0207 

Cordoba 11.41   10.86 10.77 9.66 0.0122 

Granada  12.07  12.21 8.12 12.81 10.35 0.0134 

Huelva 13.99   12.58 13.20 11.81 0.0089 

Jaen 12.78  9.78 10.54 10.95 10.04 0.0103 

Málaga 13.15 12.74 5.87 13.90 11.21 10.68 0.0240 

Sevilla  16.20 12.20 11.31 7.24 10.61 10.49 0.0319 

Huesca 19.85    14.10 17.48 0.0053 

Teruel  20.34    19.79 15.51 0.0035 

Zaragoza 17.91    16.09 15.55 0.0222 

Asturias  16.70 14.24 13.43 11.93 12.79 13.72 0.0221 

Baleares 21.16   16.45 16.94 20.11 0.0258 

Las Palmas  15.84  14.83 16.01 14.78 18.26 0.0222 

Tenerife  14.17 14.60 14.75 12.62 15.71 14.58 0.0186 

Cantabria  15.85  14.39 16.44 15.48 15.67 0.0125 

Avila  14.90     11.87 0.0031 

Burgos 18.63   17.23  17.24 0.0093 

León 14.88  13.44 16.08 9.60 13.63 0.0100 

Palencia 15.63     14.51 0.0039 

Salamanca 14.59    13.36 12.63 0.0070 

Segovia  17.01     15.48 0.0035 

Soria  16.89     15.18 0.0021 

Valladolid  16.94   14.88 19.02 16.39 0.0124 

Zamora 13.23    12.62 10.81 0.0035 

Albacete  13.40   12.31 12.17 10.83 0.0067 

Ciudad Real  15.09  10.98 13.84 13.64 12.23 0.0093 

Cuenca 13.99    13.54 11.84 0.0037 

Guadalajara  16.04   17.32  12.51 0.0038 

Toledo  14.74  12.46  17.16 12.07 0.0104 

Barcelona 27.89 16.35 13.64 13.54 14.19 22.13 0.1423 

Girona  18.33   18.35 19.15 20.67 0.0173 

Lleida 20.85    19.99 19.75 0.0110 

Tarragona 22.05  19.80 20.03 19.75 20.61 0.0191 

Alicante 16.36 14.68 11.91 10.60 15.99 16.42 0.0322 

Castellon 19.11   18.04 18.83 17.52 0.0135 

Valencia 17.54  13.46 13.09 15.92 15.88 0.0523 

Badajoz  12.64  12.30 10.99 10.92 9.20 0.0103 

Cáceres 11.90   10.74 7.93 10.44 0.0064 

Coruña 14.42  12.13 13.36 12.41 12.91 0.0215 

Lugo 14.19    12.38 11.56 0.0066 

Orense 13.48    12.45 10.68 0.0060 

Pontevedra 13.77 12.98  10.93 14.16 12.57 0.0175 

Madrid 28.50 14.27 12.42 11.15 13.87 17.90 0.1779 

Murcia  14.91 12.17 13.98 13.18 12.99 12.19 0.0244 

Navarra 22.17   20.59 16.15 20.05 0.0172 

Alava 23.02    18.94 21.55 0.0097 
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Guipúzcoa 22.03  20.10 20.38 20.44 21.90 0.0213 

Vizcaya 20.49  16.87 17.82 19.37 20.13 0.0318 

La Rioja 18.96   17.78 17.45 17.39 0.0076 

  0.2115 0.1000 0.1159 0.0679 0.0804 0.4244 ′࢞



 

 

Figure 1 presents a schematic representation for an idealized national space 
economy. The reader will undoubtedly note the resemblance with the classic idealized 
economic landscapes of Christaller, Lösch, and Von Thünen, all of which posit one 
metropolis or marketplace at the centre. Figure 1 shows one metropolis at the centre, 
but also other smaller “central” urban areas of different population sizes (urban areas 
close to the metropolis) as well as “central” rural areas (close to the metropolis). Other 
analogous territories are labelled as “peripheral” urban areas, located at some 
distance from the metropolis, surrounded by corresponding rural places. It is implicitly 
assumed that urban areas are distributed in accordance with the rank-size rule.  

Figure 1: Schematic Representation of the Classification of Spatial Units. 

 

 

The results of Tables 5 and 6 have been plotted in Figure 2, focusing only on the GCE 
estimates6. Madrid and Barcelona constitute Type-1 Metropolitan Areas (MA1), while 
Type-2 Metropolitan Areas (MA2) are made up of the remaining large cities with more 
than five hundred thousand inhabitants. These cities were identified because it is 
possible to identify the province and the types of municipalities in Tables 5 and 6. The 
rest of the municipalities are classified in UA1 and UA2. UA1 cities have a population of 
more than one hundred thousand inhabitants, while UA2 cities have more than ten 
thousand inhabitants, but less than one hundred thousand. Finally rural areas 
(municipalities with less than ten thousand inhabitants) are labeled as RA. The solid 
line represents the values of the areas located close (less than one hour’s drive) to a 
large metropolis (MA1 or MA2) and are labeled as central areas (CUA1, CUA2 and 
CRA). The dotted line represents the values of the cities located far away 
(approximately more than one hour’s drive7) and are labeled as peripheral areas 
(PUA1, PUA2 and PRA). 

                                                
6 Results for the CE estimates are very similar; any relevant conclusion does not change. 
7 A delimitation of all the Spanish territory as central or peripheral was made at a local 
level in Polèse, Rubiera and Shearmur (2007). Most of the municipalities can be classified 
knowing only the size and province in which they are located. Although this is an 
approximation due to some cases being miss-classified, they are however urban areas with 

Metropolitan 
area 

Central 
urban areas 

Centra
l rural areas 

Periph
eral rural areas 

Periph
eral urban areas 
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It seems that the most relevant factor to explain spatial differences in GDP per capita is 
the size of the main urban center of the territory. The main metropolises present the 
highest values by far (approximately twice the average of the rest of the country). The 
differences between large and medium-sized cities are less relevant, while being 
located close to or far from a large metropolis is found to be almost irrelevant. The 
continuous line is always above the dotted one. This indicates that being a medium-
sized city located close to a large metropolis permits the attraction of part of the 
growth of the metropolis due to the expulsion of space intensive activities such as 
manufacturing plants from large cities. However, the differences explained by distance 
are especially clear in rural areas. Peripheral rural areas have a significantly lower GDP 
per capita than central rural areas, given that the latter are usually residential areas 
with many commercial services, while the former are based on agricultural activities. 
These first results confirm the relevance of agglomeration economies not only for large 
cities, but also for medium-sized and small size cities and even rural areas located close 
to a large metropolis. Nevertheless, more precise analyses over an extended time 
period are needed to confirm and estimate the actual role of size and distance. These 
analyses could be possible with the extension of the methodology proposed in this 
paper to estimate the GDP over several years and other relevant variables in empirical 
regional studies. 

Figure 2: Representation of  average GCE estimates of income per type of 
municipality.  

Thousands €/person 

 
 

                                                                                                                                          
a relevant size. Consequently, no fundamental change is expected in the basic results due 
to these cases that we are not able to identify clearly.  
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4. Conclusions and Future Research.  

One of the main problems of regional studies is related to the difficulty of 
working with spatial classifications with economic sense. Normally, data are not 
available at a local level and economic researchers must deal with databases 
structured according to political or administrative criteria. Although certain 
aggregations of the information are possible, these do not usually suffice to construct 
economically meaningful sets of regions.  

This paper proposes a methodology based on Entropy Econometrics to 
estimate data at a local level according to the size of each basic spatial unit. This 
estimation exercise allows the inference of information of regions grouped according 
to a clear economic criterion: urban size. In particular, we propose a specific 
classification that jointly considers urban size and distance from the main metropolis. 
This allows the measurement of agglomeration economics and location effects.  

The methodology proposed is applied to Spain, obtaining data at a local level of 
GDP per capita for the year 2001. The results obtained are in line with previous work 
by other authors with respect to particular cases (see, for example, Chasco (2003) and 
Chasco and López (2004)): the larger the city, the higher the local GDP per capita. The 
size effect is especially clear in the biggest cities, Madrid and Barcelona. Position 
likewise seems quite relevant. Cities located close to a large metropolis present higher 
GDP’s per person than those located far away. The same also holds for the case of 
rural areas. 

The methodology was tested using a Monte Carlo simulation experiment which 
concludes that this way of estimating local data is reasonably reliable. 

The proposed methodology opens up broad possibilities that could be explored 
in subsequent research. The focus of this paper was to propose the methodology and 
test its possibilities with a real world example. Including a temporal dimension, where 
this estimation exercise could be carried out over several years, would allow not only 
the estimation of GDP differences, but also the evolution and growth of the different 
areas. Convergence analysis would also be possible using different regional 
classifications. This would be useful to test whether the convergence trends identified 
for Spanish regions are maintained when regions are constructed in terms of an 
economic and not an administrative criterion.   
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Appendix: Testing the results by a numerical experiment. 

Although the general properties of the CE-GCE estimators have been largely 
studied in the literature (see for example Golan et al., 1996, or Golan, 2006), some 
doubts about the accuracy of the specific estimates reported in the paper might 
emerge. In order to test if the entropy-based techniques applied in the section 5 of the 
paper perform well in such conditions, a simple numerical experiment has been carried 
out. The goal of this exercise is to get some empirical evidence on the performance of 
the CE and CGE approaches to estimate a unknown (6 × 50) matrix ࡼ of probabilities 
from aggregate data and some a priori matrix ࡽ.  

Our Monte Carlo experiment will start out from the actual vector y of 
proportions of income for the Spanish provinces in 2001 and it is kept fixed throughout 
the simulations. Additionally, a randomly generated matrix ࡼ is obtained in each trial 
of the simulation; this matrix is composed by elements ݌௜௝  that have been drawn from 
a uniform distribution ݌௜௝~ܷ[0,0.2];  ݅ = 1, … ,5; and ݌଺௝ = 1− ∑ ௜௝ହ݌

௜ୀଵ  in order to 
assure that they behave as a set of proper (column) probability distributions. Based on 
the linear relationship ࢞ =  vector x is obtained in each trial, and together with ,′࢟ࡼ 
the observations of vector y, it represents the aggregate data to obtain the estimates 
of the (now assumed) unknown matrix ࡼ. Another important piece in the estimation 
process is the choice of the matrix ࡽ. To reflect the idea that the specification of this a 
priori matrix can be more or less similar to the matrix ࡼ, in our experiment the cells of 
 :in the following way8 ࢛ and a random disturbance ࡼ have been generated from ࡽ

௜௝ݍ = ൫݌௜௝൯ · ൫ݑ௜௝൯;  ∀݅ = 1, … ,5; ∀݆ = 1, … ,50

଺௝ݍ = 1 −෍݌௜௝

ହ

௜ୀଵ

;   ∀݆ = 1, … ,50                     
⎭
⎬

⎫
 

(
38) 

 

Where (ߪ,1)ܰ~࢛ and ߪ is a scalar. Note that if = 0 , then ݌௜௝ = ௜௝ݍ  for all the 
cells of both matrices. The bigger the value of ߪ, the larger the divergence between 
matrices ࡼ and ࡽ and hence the smaller the expected accuracy of the estimation. This 
consequence is rather logical, given that a good specification of the ࡽ matrix (close to 
the real ࡼ matrix) will be helpful in the estimation process. On the contrary, if the 
chosen ࡽ differs significantly from the actual ࡼ, the data observed in the sample (the 
vectors ࢞ and ࢟) will have more difficulties to lead the estimates to solutions close to 
the real values. 

In the experiment six different scenarios have been simulated for several values 
of the scalar 0.4 ,0.35 ,0.25 ,0.2 ,0.1 :ߪ and 0.5. Both the CE and the GCE (applying in 
this last case the three-sigma rule for the support of the error term) solutions have 
been obtained under these levels of divergence between ࡼ and ࡽ. In each one of 
these six scenarios 1,000 trials have been carried out and the average of two overall 

                                                
8 This approach is based on the experiment carried out in Golan et al. (1996, pages 63 and 
64). To avoid undesirable negative values on ݍ௜௝ ∀݅ = 1, … ,5; if the number generation 
obtained a negative, it has been replaced by  ݍ௜௝ = 10ି଼. 
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measures of error have been computed: the root of the mean squared error (RMSE), 

which was obtained as ܴܧܵܯ = ට ଵ
ହ଴×଺

∑ ∑ ൫݌෤௜௝ − ௜௝൯݌
ଶହ଴

௝ୀଵ
଺
௜ୀଵ , and the mean absolute 

error (MAE), defined as ܧܣܯ = ଵ
ହ଴×଺

∑ ∑ ห൫݌෤௜௝ − ௜௝൯หହ଴݌
௝ୀଵ

଺
௜ୀଵ , where  ݌෤௜௝  stands for both 

the CE and GCE estimates. The Table A1 shows the results of these error measures.  

Table A1: Error measures in the Monte Carlo simulation. 

CE estimation ߪ = ߪ 0.5 = ߪ 0.4 = ߪ 0.35 = ߪ 0.25 = ߪ 0.2 = 0.1 
RMSE 0.005 0.003 0.003 0.001 0.001 0.000 
MAE 0.049 0.040 0.035 0.025 0.020 0.010 

GCE estimation ߪ = ߪ 0.5 = ߪ 0.4 = ߪ 0.35 = ߪ 0.25 = ߪ 0.2 = 0.1 
RMSE 0.072 0.059 0.052 0.037 0.030 0.015 
MAE 0.050 0.040 0.036 0.026 0.021 0.010 

As expected, the error measure are (slightly) larger in all cases if we apply a GCE 
estimation program compared with the estimates obtained a CE approach. This result 
is not surprising, given that the GCE allows for the presence of an error term that 
prevents an exact match between the row and column margins through the estimate 
of matrix ࡼ. Moreover, the deviations between real and estimated ݌௜௝  elements 
increase as the divergence between the a priori ࡽ and the real matrix ࡼ get bigger. 
Although the RMSE measure seems more sensitive to the specification choice between 
a pure CE or a GCE estimation program, both error measures, RMSE and MAE, 
remained at moderate levels even for considerably big values of the scalar ߪ. 

These outcomes give a rough idea on the size of the error that presumably our 
empirical application on section 5 can present. If we compare the distribution of 
income per province with the provincial distribution of labor in the census (both taken 
in 2001) by means of a quotient, which is similar to the ࢛ disturbance considered in 
the Monte Carlo experiment, we obtain a (50 × 1) vector that behaves approximately 
as a normal distribution and with a sample standard deviation of 0.19. This result 
suggests that the estimates obtained for the local per capita income, based on the 
estimates of the unknown ݌௜௝  elements, can be taken as reasonably reliable for the 
case of Spain.    

 


