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Abstract: 

In this paper we adopt an entropy econometrics-based estimator to study 
regional variations in regression coefficients and apply it to analyze productivity 
growths generated by R&D activities at a regional level. Considering the possible 
effects of the region’s own R&D stock as well as the spillovers produced in other 
regions, the paper proposes the use of an entropy-based technique to estimate these 
effects for a specific location. Depending on the degree of heterogeneity of the set of 
regions analyzed, it is possible that some of these regions present characteristics that 
enable them to more easily convert R&D efforts (generated in the region itself or 
obtained from other regions by R&D spillovers) into productivity gains, whereas in 
other regions the effect of (direct or spillover generated) R&D activities may be 
irrelevant. We illustrate this idea with an empirical application for Spanish regions. 
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1. Introduction. 

Since the beginnings of Economics as a science, economists have attempted to 
understand the factors of economic growth. The first approaches focused on the role 
of physical capital; see the classical works by Harrod (1939) and Domar (1946). 
However, contributions by the American economists Denison, Kuznets and Solow 
produced a veritable revolution in the approach to economic growth analysis. In their 
research, these authors understand growth as a complex phenomenon in which 
human capital, social cohesion and the capacity to innovate are even more relevant 
factors than physical capital. The relevance of the innovation and capacity of territories 
to experiment techological change was heightened following the major contributions 
of Romer (1990), Grossman and Helpman (1991), Aghion and Howitt (1992), Coe and 
Helpman (1995) or Jones (1995), among others. All the aforementioned papers 
pointed out the remarkable effects of technology, in general, and R&D activity, in 
particular, on economic growth.  

In keeping with this line of thought, a growing literature measuring the effect of 
technological activities on economic growth has appeared over the last decade. The 
majority of recent empirical studies have attempted to estimate how R&D spending 
and knowledge accumulation contribute to territorial (i.e., national or regional) 
productivity growth and, through increased productivity, how they lead to long-term 
economic growth. The goal of the present research is to measure how higher stocks of 
knowledge accumulate comparative advantages for achieving economic growth and 
how the effects derived from accumulating knowledge in one specific area can be 
transmitted to other locations; i.e., through technology spillovers. 

Among other authors, the spatial effects of technological change has been 
studied by Brugger and Stuckey (1987), Todtling (1990) or, more recently, by Wakelin 
(2001), Bottazzi and Peri (2003) and Varga and Schalk (2004), detecting a positive 
correlation between technological activities and economic development. For the 
specific case of Spain, De la Fuente (2002) links R&D effects on regional productivity 
with regional convergence and growth patterns of Spanish provinces. Other recent 
studies by Gumbau-Albert and Maudos (2006) or Lopez-Bazo et al. (2006) investigated 
the link between regional TFP growth and R&D activities, observing an important 
effect of regional spillovers associated with technological activities1.  

In this paper we present a new methodological approach to measuring 
technological spillovers based on Entropy Econometrics. The paper is organized in six 
sections. The first section introduces some basic concepts regarding the general 
framework and econometrical approach. Section 2 presents the general basis of the 
entropy econometric that provides the basis for the estimation we shall apply. In 
Section 3 we present a particular entropy-based estimator that allows for 
incorporating several types of a priori information. The main advantage of this 
estimator is that, even in situations characterized by a lack of large data samples, it is 
capable of identifying extraneous variables at the same time as it estimates the 

                                                
1 See Breschi and Lissoni (2001) or Döring and Schnellenbach (2006) for an extensive review of research 
works that study the impact of regional knowledge spillovers. 

 



relevant parameters of the specified model. This estimation technique can be very 
useful when we wish to estimate models at a specific-regional level. Section 4 shows 
an empirical application to Spanish regions and discusses the main results. Finally, 
Section 5 offers the conclusions drawn. 

 

2. Basic Framework and Econometric Approach. 

Similarly to many of the works previously cited, we will focus our interest on the TFP 
measure, based on Solow’s residual. To calculate the value of TFP, let us consider an 
extended Cobb-Douglas regional production functions with constant returns to scale of 
the physical factors like the following: 

௜௧ݕ = ௜௧ఈܮ௧ߤ ௜௧ܭ
(ଵିఈ)ܴ௜௧

ఉೃܴܫ௜௧
ఉ಺ೃ (1) 

in which y stands for value added, K indicates the stock of physical capital, L 
denotes employment, R indicates the stock of R&D in a region, IR is the indirect stock 
of R&D obtained through spillovers from other regions and t and i are time and 
regional index respectively. The term ߤ is a parameter related to the initial level of 
productivity in the region. Taking logarithms, (1) is transformed into:  

݈݊ ௜௧ݕ = ݈݊ ௜௧ߤ + ௅ߚ ln ௜௧ܮ + (1 − (௅ߚ lnܭ௜௧ ோߚ+ lnܴ௜௧ + ூோߚ ln ௜௧ܴܫ  (2) 

and: 

ܨܶ ௜ܲ௧ = ݈݊ ௜௧ݕ − ௅ߚ ݈݊ ௜௧ܮ − (1− (௅ߚ ݈݊ ௜௧ܭ
= ݈݊ ௜௧ߤ + ோߚ ݈݊ ܴ௜௧ + ூோߚ ݈݊ ௜௧ܴܫ  (3) 

Taking first differences on (3), TFP growth between two periods is given by the 
following equation: 

̇ܲܨܶ ௜௧ = ௜௧ߤ̇ + ோߚ ܴ̇௜௧ ௜௧ܴ̇ܫூோߚ+  (4) 

where the dots denote growth rates. Equation (4) shows the empirical model 
that is usually estimated for measuring the contribution of R&D activities to regional 
productivity growth. It is important to note that this equation is a global model with 
constant parameters for all the regions considered. The general problem is that in 
regression models where the cases are located geographically, sometimes regression 
coefficients do not remain fixed, but they might vary over space. In other words, 
imposing a common structure to all the set of regions studied can be unrealistic, given 
that the size of the effects of technology activities on productivity growth can vary 
across space depending on the extent of agglomeration economies in some regions. 
For example, in Varga (2000), Varga and Schalk (2004) or Ciriaci and Palma (2008) 
knowledge spillovers are allowed to vary across regions depending on economic 
concentration of economic activities.  

Previous solutions have been proposed to capture this spatial drift from the 
global model: the geographically weighted regression (GWR, see Brundson et al., 1996) 



which can be seen as an extension of the parameter expansion method (Casetti, 1972). 
Basically, GWR consists on estimating regressions like: 

̇ܲܨܶ ௜௧ = ,௜௧(݊௜ߤ̇ ݁௜) + ,ோ(݊௜ߚ ݁௜) ܴ̇௜௧ ,ூோ(݊௜ߚ+ ݁௜)ܴ̇ܫ௜௧  (5) 

where the parameters are defined as functions of the geographical location 
(݊௜, ݁௜) of region i. If these functions are constant for all the (݊௜, ݁௜), then equations (4) 
and (5) are the same.  

In this paper we propose a different approach. Similarly to GWR, we will 
assume that parameters ߚோ  and ߚூோ can vary across the different territories. But we do 
not fix an a priori geographical function to explain parameter variation; instead we let 
the data speak for themselves and we will estimate equations like (4) for each and 
every region independently. In other words, if we have data for a group of G regions, 
we estimate the following set of G regression equations: 

̇ܲܨܶ ଵ௧ = ଵ௧ߤ̇ + ଵோߚ ܴ̇ଵ௧ ଵ௧ܴ̇ܫଵூோߚ+  

(5) 
̇ܲܨܶ ଶ௧ = ଶ௧ߤ̇ + ଶோߚ ܴ̇ଶ௧  ଶ௧ܴ̇ܫଶூோߚ+

(…) 

̇ܲܨܶ ீ௧ = ௧ீߤ̇ + ோீߚ ܴ̇ீ௧  ௧ீܴ̇ܫூோீߚ+

Estimating this type of equations can be problematic if we use traditional 
estimation techniques. Basically, the lack of large series of data at a regional level 
prevents of using Least Squares-Maximum Likelihood estimators, given the reduced 
numbers of degrees of freedom. Instead, we propose the application of Entropy 
Econometrics (EE) to estimate such equations, given that these techniques have 
interesting properties when dealing ill-conditioned estimation problems (small 
samples or data sets affected by large collinearity). In Golan et al. (1996) or Kapur and 
Kesavan (1992) extensive descriptions of the entropy estimation approach can be 
found. 

 

3. A basis for Entropy Econometrics. 

3.1. The Cross-Entropy technique 

Generally speaking, EE techniques are used to recover unknown probability 
distributions of discrete random variables that can take M different known values. The 
estimate ࢖෥ of the unknown probability distribution ࢖ must be as similar as possible to 
an appropriate a priori distribution ࢗ, constrained by the observed data. Specifically, 
the Cross-Entropy (CE) procedure estimates ࢖෥ by minimizing the Kullback-Leibler 
divergence (ࢗ‖࢖)ܦ (Kullback, 1959): 

Min
࢖
(ࢗ‖࢖)ܦ = ෍ ௠݌

ெ

௠ୀଵ

݈݊ ൬
௠݌
௠ݍ
൰ (7) 



The divergence (ࢗ‖࢖)ܦ measures the dissimilarity of the distributions ࢖ and ࢗ. This 
measure reaches its minimum (zero) when ࢖ and ࢗ are identical and this minimum is 
reached when no constrains are imposed. If some information (for example, 
observations on the variable) is available, each piece of information will lead to a 
Bayesian update of the a priori distribution ࢗ.  

The underlying idea of the CE methodology can be applied for estimating the 
parameters of general linear models, which leads us to the so-called generalized Cross 
Entropy (GCE). Let us suppose a variable ݕ that depends on H explanatory variables ݔ௛: 

࢟ = ࢼࢄ + ࣕ (8) 

where ࢟ is a (ܶ × 1) vector of observations for ࢄ ,ݕ is a (ܶ ×  matrix of (ܪ
observations for the ݔ௛ variables, ࢼ is the (ܪ × 1) vector of unknown parameters 
ࢼ = ,ଵߚ) … ܶ) ு) to be estimated, and ࣕ is aߚ, × 1) vector with the random term of the 
linear model. Each ߚ௛ is assumed to be a discrete random variable. We assume that 
there is some information about its ܯ ≥ 2 possible realizations. This information is 
included for the estimation by means of a support vector ࢈′ = (ܾଵ, … , ܾெ) with 
corresponding probabilities ࢖′௛ = ,௛ଵ݌) … ,  ௛ெ). The vector b is based on the݌
researcher’s a priori belief about the likely values of the parameter. For the sake of 
convenient exposition, it will be assumed that the M values are the same for every 
parameter, although this assumption can easily be relaxed. Now, vector  can be 
written as:  

ࢼ = ൥
ଵߚ
⋮
ுߚ
൩ = ࡼ࡮ = ቎

′࢈ 0
0 ′࢈

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ ′࢈

቏ ቎

૚࢖
૛࢖
⋮
ࡴ࢖

቏ (9) 

where ࡮ and ࡼ have dimensions (ܪ × ܯܪ) and (ܯܪ × 1) respectively. Now, the value 
of each parameter ߚ௛ is given by the following expression: 

௛ߚ = ࢎ࢖ ′࢈ = ෍ ܾ௠

ெ

௠ୀଵ

௛௠݌ ;  ∀ℎ = 1, …  (10) ܪ,



For the random term, a similar approach is followed. Oppositely to other 
estimation techniques, GCE does not require rigid assumptions about a specific 
probability distribution function of the stochastic component, but it still is necessary to 
make some assumptions. ࣕ is assumed to have mean ܧ[ࣕ] = 0 and a finite covariance 
matrix. Basically, we represent our uncertainty about the realizations of vector ࣕ 
treating each element ߳௧  as a discrete random variable with ܬ ≥ 2 possible outcomes 
contained in a convex set ࢜′ = ൛ݒଵ, … ,  ௃ൟ, which for the sake of simplicity is assumedݒ
as common for all the ߳௧. We also assume that these possible realizations are 
symmetric around zero (−ݒଵ =  ௃). The traditional way of fixing the upper and lowerݒ
limits of this set is to apply the three-sigma rule (see Pukelsheim, 1994). Under these 
conditions, vector ࣕ can be defined as: 

ࣕ = ൥
߳ଵ
⋮
்߳
൩ = ࢃࢂ = ቎

࢜′ 0
0 ࢜′

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ ࢜′

቏ ቎

࢝૚
࢝૛
⋮
ࢀ࢝

቏ (11) 

and the value of the random term for an observation t equals: 

߳௧ = ࢜′ ࢚࢝ = ෍ݒ௝

௃

௝ୀଵ

௧௝ݓ ; ݐ∀  = 1, … ,ܶ (12) 

and, consequently, model (8) can be transformed into: 

࢟ = +࢖࡮ࢄ  (13) ࢝ࢂ

So we need also to estimate the elements of matrix ࢃ (denoted by ݓ෥௧௝ ) and 
the estimation problem for the general linear model is transformed into the estimation 
of ܪ + ܶ probability distributions. For this estimation, once specified the a priori 
probability distributions ࡽ and ࢃ૙ respectively for  ࡼ  and ࢃ, the GCE problem is 
written in the following terms: 

Min
ࢃ,ࡼ

(૙ࢃ,ࡽ‖ࢃ,ࡼ)ܦ = ෍ ෍ ௛௠݌

ெ

௠ୀଵ

ு

௛ୀଵ

݈݊ ൬
௛௠݌
௛௠ݍ

൰ + ෍෍ݓ௧௝

௃

௝ୀଵ

்

௧ୀଵ

݈݊ ቆ
௧௝ݓ
௧௝଴ݓ

ቇ (14) 

subject to: 

௧ݕ = ෍ ෍ ܾ௠݌௛௠ݔ௛௧

ெ

௠ୀଵ

+ ෍ݒ௝

௃

௝ୀଵ

௧௝ݓ ; 
ு

௛ୀଵ

ݐ∀  = 1, … ,ܶ (15) 

෍ ௛௠݌ = 1
ெ

௠ୀଵ

;  ∀ℎ = 1, …  (16) ܪ,

෍ݓ௧௝ = 1
௃

௝ୀଵ

; ݐ∀  = 1, … ,ܶ (17) 



The restrictions in (15) ensure that the posterior probability distributions of the 
estimates and the errors are compatible with the observations. The equations in (16) 
and (17) are just normalization constraints. This GCE estimation procedure can be seen 
as an extension of the particular Generalized Maximum Entropy (GME) principle (or 
alternatively the GME can be considered as a particular case of the GCE procedure), 
given that the solutions of both approaches are the same when the a priori probability 
distribution contained in ࡽ are all uniform. In other words, the ME solutions are 
obtained by minimizing the Kullback-Leibler divergence (ࡽ‖ࡼ)ܦ between the 
unknown ݌௛௠ and the a priori ݍ௛௠ = ଵ

ெ
 ∀݉ = 1, . .  The same happens for the . ܯ,

estimation of ݓ௧௝  when the a priori probabilities are fixed as uniform (ݓ௧௝଴ = ଵ
௃

 ∀݆ =
1, . . ,  which is the natural (and most frequently applied) point of departure to ,( ܬ
reflect the uncertainty about ࣕ.    

 

3.2. A data-weighted prior estimator 

The sketched GCE procedure can be extended in order to develop a more 
flexible estimator that allows for simultaneous parameter estimation and variable 
selection in linear statistical models. Related to the Bayesian Method of Moments 
(BMOM, see Zellner, 1996, 1997), the technique has been proposed in Golan (2001) as 
data-based method of estimation that uses both sample and non-sample information 
in determining a basis for coefficient reduction and extraneous variable identification. 
In other words, this technique allows for shrinking the coefficient of the explanatory 
variables that can be classified as irrelevant in the linear model. A recent empirical 
application of this method can also be found in Bernadini (2008).  

 

Coefficient estimation. 

Our objective is to identify the extraneous variables included in the model and 
simultaneously produce an estimator with a good sampling performance over the 
whole range of the parameter space, which can be achieved by the GCE estimator if 
we combine uniform priors with spike priors. We start by specifying a discrete support 
space b for each ߚ௛ (and the same for v) symmetric around zero, with large lower and 
upper bounds for b and the three-sigma rule for v, so that each ߚ௛ and ߳௧  are 
contained in the chosen interval with high probability. Besides fixing an uniform 
probability distribution that will be used as q in the GCE estimation (i.e.; ݍ௠ = ଵ

ெ
 

∀ ܾ௠)., we also specify a “spike” prior for each ߚ௛, with a very high probability at 
ܾ௠ = 0 (i.e.; ݍ௠ ≅ 1 if  ܾ௠ = 0 and ݍ௠ ≅ 0 for the remaining values). Thus, a flexible, 
data-based prior is specified such that for each ߚ௛ coordinate either a spike prior at the 
ܾ௠ = 0, a uniform prior over the discrete support space b, or any convex combination 
of the two can result. If we denote with ࢛ࢗ and ࢙ࢗ the uniform and spike a priori 
distributions respectively, the objective proposed can be achieved by modifying the 
previous GCE program in the following way: 



Min
ࢽࡼ,ࡼ ࢃ,

(૙ࢃ,ࢽࡽ,ࡽ‖ࢃ,ࢽࡼ,ࡼ)ܦ = ෍(1 − (௛ߛ ෍ ௛௠݌

ெ

௠ୀଵ

ு

௛ୀଵ

݈݊ ቆ
௛௠݌
௛௠௨ݍ

ቇ 

+෍ߛ௛ ෍ ௛௠݌

ெ

௠ୀଵ

ு

௛ୀଵ

݈݊ ቆ
௛௠݌
௛௠௦ݍ

ቇ 

+෍෍݌௛௡
ఊ

ே

௡ୀଵ

ு

௛ୀଵ

݈݊ ቆ
௛௡݌
ఊ

௛௡ݍ
ఊ ቇ 

+෍෍ݓ௧௝

௃

௝ୀଵ

்

௧ୀଵ

݈݊ ቆ
௧௝ݓ
௧௝଴ݓ

ቇ 

(18) 

subject to: 

௧ݕ = ෍ ෍ ܾ௠݌௛௠ݔ௛௧

ெ

௠ୀଵ

+ ෍ݒ௝

௃

௝ୀଵ

௧௝ݓ ; 
ு

௛ୀଵ

ݐ∀  = 1, … ,ܶ (19) 

෍ ௛௠݌ = 1
ெ

௠ୀଵ

;  ∀ℎ = 1, …  (20) ܪ,

෍ݓ௧௝ = 1
௃

௝ୀଵ

; ݐ∀  = 1, … ,ܶ (21) 

෍݌௛௡
ఊ = 1

ே

௡ୀଵ

;  ∀ℎ = 1, …  (22) ܪ,

The ߛ௛  parameters are estimated simultaneously with the rest of ߚ௛ 
coefficients of the model. Each ߛ௛ measures the weight given to the spike prior ࢙ࢗ for 
each parameter ߚ௛ and it is defined as ߛ෤௛ = ∑ ܾ௛௡

ఊே
௡ୀଵ ෤௛௡݌

ఊ , where ܾ௛ଵ
ఊ = 0 and ܾ௛ே

ఊ = 1 
are respectively the lower and upper bound defined as the support of these 
parameters (࢈′௛ = (0, … ,1) → 0 ≤ ௛ߛ ≤ 1; ∀ℎ = 1, . .  The a priori probability .(ܪ,
distributions fixed for them are always uniform (ݍ௛

ఊ = ଵ
ே

 ∀݊ = 1, . . ,ܰ) and the same is 

applied for the errors (again ݓ௧௝଴ = ଵ
௃

 ∀݆ = 1, . . ,  .( ܬ

To understand the logic of this data-weighted prior (DWP) estimator an 
explanation on the objective function of the previous minimization program is 
required. Note that equation (18) is divided in four terms. The last term is exactly the 
same as in the GCE program and it measures the Kullback divergence between the 
posterior and the prior probabilities for the noise component of the model. The first 
term quantifies the divergence between the recovered probabilities and the uniform 
priors for each ߚ௛ coefficient, being this divergence weighted by (1−  ௛). On theߛ
contrary, the second element of (18) measures the divergence with the spike prior and 



it s weighted by ߛ௛ . The third element in (18) relates to the Kullback divergence of the 
weighting parameters ߛ௛ . 

The solutions of this minimization program are: 

෤௛௠݌ =
௛௠ݍ
ఊ෥೓ ஺೓⁄ ∑௛ିଵ൯ܣ൫ൣ݌ݔ݁ ෨௧ܾ௠ݔ௛௧்

௧ୀଵ ൧
∑ ௛௠ݍ

ఊ෥೓ ஺೓⁄ ∑௛ିଵ൯ܣ൫ൣ݌ݔ݁ ෨௧ܾ௠ݔ௛௧்
௧ୀଵ ൧ெ

௠ୀଵ
;  ∀ℎ = 1, ݉;ܪ…

= 1, …  ܯ,
(23) 

෥௧௝ݓ =
௧௝଴ݓ ௝൧ݒ෨௧ൣ݌ݔ݁

∑ ௧௝଴ݓ ௝൧ݒ෨௧ൣ݌ݔ݁
௃
௝ୀଵ

; ݐ∀  = 1, …ܶ; ݆ = 1, … ,  (24) ܬ

were: 

෤௛ߛ = ෍ܾ௛௡
ఊ

ே

௡ୀଵ

෤௛௡݌
ఊ  (25) 

௛ܣ = [1− [෤௛ߛ ൥(ߛ෤௛ − ܯ݈݊(1 − ෤௛ߛ ෍ ௛௠௨ݍ ௛௠௨ݍ)݈݊ ) + ෤௛ߛ

ெ

௠ୀଵ

൩൘  (26) 

and ෨௧ are the Lagrangian multipliers associated with restrictions (19). From the 
recovered ݌෤௛௠ probabilities, the estimated value of each parameter ߚ௛ is obtained as: 

෨௛ߚ = ෍ ܾ௠

ெ

௠ୀଵ

;෤௛௠݌  ∀ℎ = 1, …  (27) ܪ,

Under some mild assumptions (see Golan 2001, page 177) the consistency and 
asymptotic normality of the DWP estimates can be ensured. Additionally, these 
assumptions also guarantee that the approximate variances of the DWP estimator is 
lower than the approximate variance of the GCE estimator, which in turn is lower than 
the approximate variance of a ML-LS estimator (see Golan, 2001, page 179).  

 

Variable selection. 

Simultaneously to the estimation of the parameters of the model, the DWP 
estimator discriminates between relevant and extraneous explanatory variables. The 
proposed estimation strategy provides two indications for this objective. Firstly, 
estimates of the weighting parameters ߛ௛ , obtained as: 

෤௛ߛ = ෍ܾ௛௡
ఊ

ே

௡ୀଵ

෤௛௡݌
ఊ ;  ∀ℎ = 1, …  (28) ܪ,

can be used as a tool for this purpose: as ߛ෤௛ → 0 the prior becomes more 
uniform and the estimates approach those of the GME estimator. On the contrary, 
large values of ߛ෤௛ , the GCE estimator with spike prior on zero takes over. 



Consequently, the irrelevant variables of the model will be characterized by large 
values of ߛ෤௛ (Golan considers sufficiently large values when ߛ෤௛ > 0 .49) together with 
estimates of  ߚ௛ close to zero. 

Moreover, a ߯ଶ statistic can be constructed in order to test if the estimate for 
 ௛ is notݔ ௛ is significantly different from zero (and, in consequence, variableߚ
irrelevant). The basic idea is to test if the recovered ݌෤௛௠ are significantly different from 
the respective spike prior ݍ௛௠௦ . The Kullback-Leibler divergence between our posterior 
and these a priori probabilities is: 

࢙ࢎࢗ‖ࢎ෥࢖)௛ܦ ) = ෍ ෤௛௠݌

ெ

௠ୀଵ

݈݊ ቆ
෤௛௠݌
௛௠௦ݍ

ቇ (29) 

And the chi-squared divergence between both distributions is: 

߯ெିଵଶ = ܯ ෍
௛௠௦ݍ−෤௛௠݌) )ଶ

௛௠௦ݍ

ெ

௠ୀଵ

 (30) 

A second-order approximation of ܦ௛(࢖෥࢙ࢎࢗ‖ࢎ ) is the entropy-ratio statistic for 
evaluating ࢖෥ࢎ versus ࢙ࢎࢗ : 

࢙ࢎࢗ‖ࢎ෥࢖)௛ܦ ) ≅
1
2 ෍

௛௠௦ݍ−෤௛௠݌) )ଶ

௛௠௦ݍ

ெ

௠ୀଵ

 (31) 

Consequently,  

࢙ࢎࢗ‖ࢎ෥࢖)௛ܦܯ2 ) → ߯ெିଵଶ  (32) 

Given this relationship, we can use the measure 2ܦܯ௛(࢖෥࢙ࢎࢗ‖ࢎ ) in order to test 
the hypothesis ܪ଴: ߚ௛ =0. If the null hypothesis is not rejected, an extraneous variable 
 .௛ is identified2ݔ

 

4. An empirical application for the Spanish regions. 

4.1. The specific formulation for the case of the Spanish regions. 

The above sketched estimation technique can be very useful when we want to 
estimate models like the group of equation regressions depicted on (6). Depending on 
the degree of heterogeneity of the set of regions analyzed, it is possible that some of 
them present characteristics to convert more easily R&D efforts (generated on the 
region itself or obtained from other regions by R&D spillovers) into productivity gains, 
whereas in other regions the effect of (direct or spillover generated) R&D activities 

                                                
2 To prevent computational problems that appear when computing log(0), in the empirical application 
on the next section the spike priors ࢛ࢎࢗ have been specified with a point mass at zero equal to 0.999 and 
0.0005 respectively for the other points of the support vectors. 

 



could be irrelevant. By applying the DWP estimator we have estimated to the Spanish 
regions a set of equations as the following: 

௜௧ݕ̇ = ௜ߤ + ௜݀௧ߟ + ௜ோߚ ܴ̇௜௧ ௜ூோߚ+ ௜௧ܴ̇ܫ  (33) 

We have 15 equations to estimate, where i = 1, …, 15 (the 15 Spanish inland 
regions)3 and t = 1,...,20 (annual growth rates from 1980-1981 to 1999-2000). The 
dependent variable ̇ݕ௜௧  is the annual growth rate of total factor productivity. As 
explained previously, the TFP growth in a region i in a time period t is assumed to 
depend basically on the own R&D stock growth rate (ܴ̇௜௧) and the growth rate of the 
stock of R&D obtained through spillovers (ܴ̇ܫ௜௧). Additionally, equation (33) contains a 
constant i and the effect of a time dummy variable ݀௧  that takes value 1 from period 
1990-1991 to 1999-2000. 

In order to obtain the indirect stock of R&D obtained through spillovers from 
other regions (ܴܫ), the specification of a matrix S of spatial weights is necessary, given 
that variable IR is defined as the weighted sum of the R&D stocks of the neighbor 
regions: 

௜௧ܴܫ = ෍ݏ௜௝ ௝ܴ௧

ଵହ

௝ஷ௜

 (34) 

Several approaches can be taken for defining the elements ݏ௜௝.4  Specifically, we 
have considered two different possibilities: 

஻ࡿ = ൜
௜௝ݏ = 1; if ݆and ݅ have a common border 
௜௝ݏ = 0;  anywhere else;                                 

்ࡿ = ቐ
௜௝ݏ = ௜௝ݐ ෍ݐ௜௝

௝ஷ௜

൘                                                

௜௝ݏ = 0;  anywhere else;                               
 

being  ݐ௜௝  the volume of trade (in Euros) between the regions i and j in 2001. 

These two matrices correspond to different approaches of representing 
channels for regional R&D spillovers. When the binary matrix ࡿ஻ is considered, we are 
considering a geographical dimension, assuming that R&D spillovers are generated 
only between regions that share a common border. Additionally, matrix ்ࡿ  introduces 
the possibility that the R&D spillovers may be generated not by a spatial dimension but 
through interregional trade. For the estimations we have collected data of R&D stocks 
per region from the BDMores database elaborated by the Spanish Ministry of Economy 
from 1980 until 2000 at constant prices of 1980, as well as data of regional labor, 
private physical capital and gross value added (also at constant prices of 1980). This 
database also provides information of the share of remuneration of workers in the 

                                                
3 We exclude of the analysis the cases of the Balearic and Canary Islands, given their location relatively 
far from the remaining set of Spanish regions.  
4 Following the traditional practice in spatial econometrics, the ݏ௜௝  elements are row-standardized in all 
the cases. 



gross value added (that is used of a proxy of parameter ߙ to obtain the regional TFP 
levels). The data of interregional trade necessary to construct matrix ்ࡿ  are obtained 
from the C-Interreg database elaborated by the Klein Institute at the Autonomous 
University of Madrid. 

With these data, we have estimated 15 different equations like (33) for the 15 
Spanish regions using the DWP estimator. Consequently, specifying some support for 
the set of parameters to estimate and the errors is required. We have fixed the same 
vector b for parameters ߚ௜ோ  and ߚ௜ூோ . In order to use the DWP estimator, these 
supports should be centered on zero and with values large enough to cover all the 
parameter space. Specifically, we have considered M=3 with vectors ࢈ᇱ = (−1,0,1). In 
the recent works by Beneito (2001), López-Bazo et al. (2006), Gumbau-Albert and 
Maudós (2006), Balmaseda and Melguizo (2007) or Escribá and Murgui (2007) the 
estimates obtained for the own region R&D stocks elasticity ranging from almost zero 
to around 0.45, which seems to suggest that an upper bound of 1 for these parameters 
௜ோߚ  is sufficiently high. The variability of previous empirical results about the 
contribution of other regions’ R&D on regional TFP growth is even larger. Gumbau-
Albert and Maudos (2006) found it quite large, between 0.18 and 0.41 (although they 
obtain negative estimates for the own R&D), whereas López-Bazo et al. (2006) 
obtained very small positive values (and even negative estimates in some 
specifications of their model). In any case, the vector b considered for parameters ߚ௜ூோ  
seems adequate as well. Given the high uncertainty about the sign and magnitude of 
the constant and the time dummy, we opted for specifying wider support vectors like 
ᇱ࢈ = (−5,0,5) for parameters ߤ௜  and ߟ௜. For the weighting parameters ߛ௛  we fixed 
supporting vectors composed only by N=2 values ࢈ᇱ = (0,1). Finally, the usual three-
sigma rule (with the standard deviations of the dependent variables) has been applied 
for specifying the supports of the error terms.  

 

4.2. Brief discussion of some results.  

The estimation results following the two different proposed approaches are 
reported in Table 1 (Matrix SB and Matrix ST). For the sake of simplicity, estimates of 
the intercept and time dummy parameter are not reported. The symbol (*) means that 
the estimate is significantly different from zero at the 5% level according to 
߯ெିଵଶ  statistics. In the remaining cases, the variable was identified as extraneous 
because the respective estimate ߛ෤௛ > 0 .49. Appendix A contains more detailed 
information on the values of the ߯ெିଵଶ  statistics and the estimates ߛ෤௛ . 



Table 1. Estimates from the Data-Weighted Prior (DWP) regressions. 

 Matrix ࡿ஻ Matrix ்ࡿ  
௜ோߚ  ௜ூோߚ  ௜ோߚ  ௜ூோߚ   

Andalusia  0.205** 0.004 (e)  0.195** 0.003 (e) 
Aragon  0.096** 0.101**  0.096** 0.106 ** 
Asturias  0.002 (e) 0.001 (e)  0.002 (e) 0.002 (e) 
Cantabria  0.048** 0.148**  0.048** 0.128** 
Castilla-Leon  0.001 (e) 0.001 (e)  0.001 (e) 0.001 (e) 
Castilla-La Mancha  0.072** 0.062**  0.071** 0.059** 
Catalonia  0.173** 0.002 (e)  0.177** 0.002 (e) 
Valencia  0.176** 0.201**  0.175** 0.220** 
Extremadura  0.032** 0.001 (e)  0.000 (e) 0.001 (e) 
Galicia  0.170** 0.002 (e)  0.150** 0.002 (e) 
Madrid  0.105** 0.000 (e)  0.105** 0.001 (e) 
Murcia  0.126** 0.082**  0.126** 0.090** 
Navarra  0.201** 0.107**  0.199** 0.116** 
Basque Country  0.267** 0.002 (e)  0.244** 0.238** 
Rioja -0.054** 0.079** -0.054** 0.091** 

Note: The symbol (**) means that the estimate is significantly different from zero 
at the 5% level according to ߯ெିଵଶ  statistics. The symbol (e) indicates that the 
variable has been identified as extraneous because the respective estimate 
෤௛ߛ > 0 .49.  

 

These results allow us to extract some basic conclusions about the Spanish 
case. Firstly, our measure of the influence of R&D on productivity, based on the 
developed methodology, confirms the existence of a clear, positive and significant 
relationship between the R&D stock growth rate and productivity growth in most 
cases. A positive and significant relationship can be observed in twelve regions under 
the SB Matrix and eleven regions under the ST approach. The cases in which this 
relationship is not significant or is negative, which only occurs in the case of Rioja in 
both approaches, are regions with a high presence of farming activities in their 
economic structure, or, as in the case of Asturias, constitute an economy that 
underwent a long structural crisis during the analyzed period due to being specialized 
in traditional heavy manufacturing. It is worth observing that the results are quite 
similar in both approaches, thus giving more consistency to the conclusions.  

Secondly, our results confirm the relevance of R&D spillovers in the Spanish 
case. These spillovers appear significant (always with a positive effect) in seven cases 
under the SB approach and eight under the ST approach. In several cases we can 
observe that the effect of R&D, summing both the internal effect and those derived 
from spillovers, is much more relevant in regions that make less of an R&D effort than 
others do. For example, Madrid is the region that makes the highest effort in R&D in 
Spain, but the total contribution of the sum of internal and external R&D over 
productivity is higher in cases like Murcia, Aragon or Cantabria, which reap the gains of 
being in an area with higher general R&D efforts.  

However, a third idea may be extracted from the results: the regions which 
obtain the largest gains from R&D spillovers are normally those that also make quite 
relevant efforts. There are some important exceptions to this finding. On the one 



hand, Madrid and Catalonia are the two regions that make the highest efforts in R&D 
in Spain; however, we did not find that they benefit from R&D spillovers. This is 
probably because they produce spillovers to other regions. On the other hand, 
Cantabria, which does not present high ratios of R&D effort, takes clear advantage of 
spillovers. However, successful behavior is normally that followed by Navarra, 
Valencia, Aragon or Castile-La Mancha, among others, consisting in making relevant 
R&D efforts of their own which enable them to capture even more relevant effects 
from R&D spillovers.    

Finally, it is especially worth observing that there exist some geographical 
patterns in spillover behavior and in general R&D contributions to productivity. Firstly, 
the regions with a major R&D effect are the most urbanized areas of the country: 
Bilbao (Basque Country), Valencia, Barcelona (Catalonia) and Madrid. Secondly, Figure 
2 shows R&D effects, both internal and from spillovers, in which it can be seen that the 
highest spillovers are from Navarra, Aragon and Cantabria, while a network of 
spillovers can also be identified between the Mediterranean coastal regions: from 
Catalonia to Valencia and Aragon and from Valencia to Murcia and Aragon. As may be 
observed, the spillover effects of R&D efforts are especially clear in the most 
developed and fastest growing area of the country: the northeast regions or, as they 
are usually called, the Ebro-axis area. Several studies (see Raymond (2002) or 
Villaverde (2004), among others) show that this area presents a convergence between 
them but distancing from the rest of the country.  

Madrid causes similar positive effects, but only over one region, its closest one: 
Castile-La Mancha5. This means that the presence of a relevant nucleus of R&D close to 
a specific region does not imply a definitely positive effect (as occurs with Extremadura 
or Castile-Leon). To reap these gains from spillovers, intense commercial relationships 
must also be maintained and relevant efforts be made, as occurs in the cases of the 
Mediterranean coastal regions or between Castile-La Mancha and Madrid (through the 
intensive integration of Toledo or Guadalajara with Madrid’s metropolitan area). These 
results are in consonance with previous research on regional growth patterns in the 
Spanish case (see De la Fuente (2002), among others). 

                                                
5 We say that this is the closest region because the two main cities not belonging to the Autonomous 
Community of Madrid belong to Castile-La Mancha: Guadalajara and Toledo.  



Figure 1. Map with results from the DWP regression with the SB matrix (*). 

 

 

The results are basically the same irrespective of the approach used. This is 
relevant because the first scenario used to obtain the results in Table 1 employs a 
geographic approach, while the second one is a commercial approach and the results 
obtained are basically the same. Geographical distance is still relevant in the spillover 
of R&D effects. New information and communication technologies mean that the 
globalization of economies and the knowledge creation process are more integrated, 
but they do not alter the fact that distances are still fundamental for the transmission 
of technological and knowledge advances. Spillover effects decrease faster with 
distances. This means that regions which made strong efforts in R&D, such as Galicia or 
Andalusia, do not reap the positive effects of the efforts of others regions, as occurs in 
other cases, like Castile-La Mancha, Murcia or Cantabria.  

 

5. Conclusions. 

The aim of this paper is to estimate economic models to explain productivity 
growths generated by R&D activities at a regional level considering the possible effects 
of the region’s own R&D stock as well as the spillovers produced in other regions.  

The paper proposes the use of an entropy-based technique to estimate these 
effects, which is the main contribution of the research study. The most relevant 
advantage of this estimator is that, even in situations characterized by a lack of large 
data samples, it is capable of identifying extraneous variables at the same time as it 

(*)The intensity of grey on the map represent the own R&D effect over productivity. 
White regions are the ones that appear as exogenous. The height of the bars represents 
the R&D spillover effect.  



estimates the relevant parameters of the specified model. This estimation technique 
may be very useful when we wish to estimate models at a specific-regional level. 
Depending on the degree of heterogeneity of the set of regions analyzed, it is possible 
that some of these regions may present characteristics that more easily convert R&D 
efforts (generated within the region itself or obtained from other regions by R&D 
spillovers) into productivity gains, whereas in other regions the effect of (direct or 
spillover generated) R&D activities may be irrelevant.  

We illustrate this idea with an empirical application for Spanish regions. Results 
show that R&D efforts are crucial in increasing productivity. However, we may 
conclude that spillovers are also highly relevant, even between regions. These 
spillovers lead to relevant increases in productivity, especially in those regions that 
make significant R&D efforts of their own and are located close to an R&D nucleus 
such as Madrid or Barcelona. Some spatial patterns of behavior can also be observed. 
Spillovers are more significant in the northeast area of the country, in which the 
regions are growing faster, are closer to the European Union and are more urbanized. 
These elements, which are relevant to understand general growth, seem to be 
relevant also in the understanding of knowledge transmission. 
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APPENDIX A: ࣑ିࡹ૚૛  STATISTICS AND ESTIMATES OF  ࢽ෥ࢎ. 

 Matrix ࡿ஻ Matrix ்ࡿ  

௜ோߚ  ௜ூோߚ  ௜ோߚ  ௜ூோߚ   

Andalusia 22.810 
(0.023) 

0.064 
(0.738) 

22.710 
(0.023) 

0.062 
(0.738) 

Aragon 22.015 
(0.025) 

22.038 
(0.025) 

22.013 
(0.025) 

22.065 
(0.025) 

Asturias 0.053 
(0.739) 

0.050 
(0.739) 

0.053 
(0.739) 

0.051 
(0.739) 

Cantabria 21.840 
(0.026) 

22.328 
(0.024) 

21.841 
(0.026) 

22.194 
(0.025) 

Castilla-Leon 0.049 
(0.739) 

0.050 
(0.738) 

0.049 
(0.739) 

0.050 
(0.739) 

Castilla-La Mancha 21.912 
(0.025) 

21.880 
(0.026) 

21.912 
(0.025) 

21.872 
(0.026) 

Catalonia 22.524 
(0.023) 

0.053 
(0.738) 

22.552 
(0.023) 

0.055 
(0.739) 

Valencia 22.545 
(0.023) 

22.768 
(0.023) 

22.541 
(0.023) 

22.961 
(0.022) 

Extremadura 21.808 
(0.026) 

0.049 
(0.739) 

0.048 
(0.739) 

0.049 
(0.739) 

Galicia 22.492 
(0.026) 

0.054 
(0.739) 

22.344 
(0.024) 

0.055 
(0.739) 

Madrid 22.058 
(0.026) 

0.048 
(0.739) 

22.057 
(0.025) 

0.049 
(0.739) 

Murcia 22.181 
(0.025) 

21.952 
(0.025) 

22.179 
(0.025) 

21.989 
(0.025) 

Navarra 22.768 
(0.023) 

22.071 
(0.025) 

22.752 
(0.023) 

22.122 
(0.025) 

Basque Country 23.481 
(0.021) 

0.055 
(0.736) 

23.218 
(0.021) 

23.156 
(0.022) 

Rioja 21.856 
(0.026) 

21.938 
(0.025) 

21.856 
(0.026) 

21.990 
(0.025) 

The estimates of ߛ෤௛ are shown in brackets. 

 

 


