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Abstract: 

Information for constructing labor market indicators is often observed 

with a higher level of geographical aggregation than it would be desired. 

In such a situation, an Ecological Inference (EI) exercise is required to 

disaggregate information from aggregated data. In this article we propose 

an estimator based on Entropy Econometrics approach that will be 

applied to distributionally weighted regressions. An empirical application 

to Spanish data is presented, where unemployment rates at NUTS-III 

level are estimated basing on (i) the aggregate rate for the whole country 

and a regressor constructed for registers of unemployed, and (ii) affiliated 

workers to Social Security, which is a variable observable at NUTS-III 

scale that will be the regressor in our equation. The approach proposed 

here does not require parameter homogeneity across space, which allows 

for capturing potential spatial heterogeneity in regional labor markets 
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1. Introduction. 

One relatively frequent limitation for empirical economics is the lack of data 

available at an appropriate spatial scale. To overcome this problem, a 

process of Ecological Inference (EI) is applied in order to recover the 

information at the required spatial scale. EI can be defined as the process of 

estimating disaggregated information from data reported at aggregate level. 

The foundations of EI were introduced in the works by Duncan and Davis 

(1953) and Goodman (1953). More recently, the work of King (1997) 

introduced a methodology that reconciled and extended previously adopted 

approaches. The methodological framework where EI is based on is 

generically known as “small area estimation” in the statistical literature 

(Ghosh and Rao, 1994; or more recently, You and Rao, 2003; and Toto and 

Nadram, 2010).  

 

Within the set of techniques used for EI problems,1 the estimation 

procedures based on entropy econometrics are gaining weight. Recent 

applications can be found in Judge et al. (2004), Peeters and Chasco (2006) 

or Bernardini Papalia (2010). On this background, our proposal is based on 

a specific type of distributionally weighted regressions. This type of 

techniques requires of disaggregated observations on the regressors 

included in the equations. In such a situation, we propose to approach the 

Ecological Inference by relaxing the spatial homogeneity hypothesis of 

parameters.  

 

The paper is divided into three further sections. In section two a 

Distributionally Weighted Regression (DWR) is proposed as a way to 

estimate disaggregated data. The use of entropy econometrics for DWR 

estimators allows for introducing parameter heterogeneity, which usually 

                                            

1 An extensive survey of recent contributions to the field can be found in King, Rosen and 

Tanner (2004). 
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implies more accurate estimates of the spatially disaggregated data. Section 

four presents an empirical application with actual NUTS-III Spanish data. 

The last section presents the main conclusions.  

 

2. Distributionally weighted regressions for Ecological 

Inference 

Consider a geographical area (a country or region) for which we have 

         observations of the indicator of interest. These   data points can 

refer to   observations along time of our indicator or to smaller spatial sub-

areas where it is observable. Further, suppose that there is a more detailed 

geographical disaggregation, which is contained in the classification into 

        different sub-areas (counties or municipalities, for example), on 

which we would like to observe the indicator of interest. The objective of the 

estimation problem would be to recover the values of the variable 

disaggregated by   sub-areas. This is an exercise of EI that will allow 

obtaining     estimates from the aggregate information we have in the   

observable data points.  

 

The traditional approaches to EI based on some DWR of the type proposed 

in Bidani and Ravallion (1997), are based on the homogeneity across space 

hypothesis and assume constancy of parameters across the disaggregated 

spatial units. This assumption is rarely tenable, since the aggregation 

process usually generates macro-level observations across which the 

parameters describing individuals may vary (Cho, 2001).  Several solutions 

to deal with this kind of problems have been proposed (Calvo and Escolar 

2003, Judge, et al. 2004; Bernardini Papalia 2010), but the approach we 

follow in this paper is closely related to the idea suggested by Peeters and 

Chasco (2006). 
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We start by paying attention to some aggregate indicator observable for 

each data point i,    . In the context of a DWR,     is usually defined as a 

weighted sum of a function of the latent sub-area indicators    , i. e.: 

 

    ∑      

 

   

           1 

 

where     is the (observable) weight give to area j at point i. Very often the 

estimation objective is a sub-area indicator, obtained as a function of the 

sub-area value of the target variable. This is usually defined as the value of 

one variable of interest (i.e., number of unemployed people) by unit of other 

variable (i.e., potentially active population).  

 

Additionally, by including an observed explanatory variable (or several) for 

the sub-areas j on each data point i,    ,  the latent sub-group values can be 

specified as follows: 

                   2 

  

Note that the linear model in equation (2) also includes an idiosyncratic 

effect (   ) at the sub-area level. The estimation of DWR models like this can 

be based on the use of GCE for estimating linear models, even when it 

departs from a technique originally designed to estimate probabilities.  

 

It is clear that the elements in equation (2) do not behave as probabilities, 

however. The noise components, for example, can be either positive or 

negative and do not necessarily add-up to one. In a GCE framework, we 

represent our uncertainty about the realizations of the errors treating each 

element     as a discrete random variable with     possible outcomes 
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contained in a convex set    {       }, which for the sake of simplicity will 

be assumed as common for all the    . We also assume that these possible 

realizations are symmetric around zero (      ). The traditional way of 

fixing the upper and lower limits of this set is to apply the three-sigma rule 

(see Pukelsheim, 1994). Under these conditions, each     can be defined as: 

    ∑      

 

   

                     3 

 

where      is the unknown probability of the outcome    for the sub-area j in 

point i. 

 

The parameters to be estimated (           ) are treated in a similar way and 

they are assumed as discrete random variables that can take values 

considered in some supporting vectors with     possible values (   and 

  ) with respective unknown probabilities (   and   ). For the sake of 

simplicity, the support spaces are constructed as discrete, bounded entities. 

The support points are chosen on the basis of a priori information. 2   

 

Under this GCE framework, the full distribution of each parameter and of 

each error (within their support spaces) is simultaneously estimated under 

minimal distributional assumptions, by means of the following program:  

   
          

 (       ‖        )   

∑∑∑    
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4 

 

                                            

2 The choice of  , and the choice of continuous support spaces and different priors, is 

discussed in Golan, Judge and Miller, (1996). It is also possible to construct unbounded and 

continuous supports within the same framework (Golan, Judge and Miller, 1996). 
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It is important to point out that we assume: (i) unit specific coefficients for 

the sub-areas (parameter heterogeneity); (ii) a parametric specification of 

the unobserved spatial effects (spatial heterogeneity) through     errors, 

which can be positive or negative. Once estimated the coefficients in 

equation (), the estimates of the sub-area indicators will be given by: 

 ̂    ̂    ̂        ̂  7 

 

The optimal solutions depend on the prior information and the data. If the 

priors are specified such that each choice is equally likely to be selected 

(uniform distributions), then the GCE solution reduces to the Generalized 

Maximum Entropy (GME) one. As with the GME estimator, numerical 

optimization techniques should be used to obtain the GCE solution.  
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3. How the method works: disaggregating 

unemployment rates in Spain at NUTS-III level from 

information in registers 

In this section we try to find some empirical evidence on the performance of 

the GCE-based DWR technique to estimate a set of (   ) disaggregated 

latent indicators. Specifically, we estimate the quarterly rates of 

unemployment in Spain along the period 2008-2012 at a NUTS-III level of 

geographical disaggregation. Spain is administratively divided into 50 

provinces for which quarterly data on unemployment rates are published in 

the Labor Force Survey by the National Statistical Institute (INE). We 

would assume that the only observable information is the national 

unemployment rate (aggregate    ) and by applying the GCE-GME approach 

described before we estimate the provincial rates.  

 

Equations like (2) require a regressor (   ) observable at the desired 

geographical level and a set of observable weights for each sub-area (   ). We 

have chosen as regressor a proxy for the unemployment rates that can be 

observed at NUTS-III level in the registers of unemployed people and the 

affiliates to the Social Security system. By summing up the number of 

registered unemployed and the total affiliates to the Social Security, we 

have a rough approximation to the potentially active population by province. 

This information is used in order to define the weights of each province   for 

each time period  . Furthermore, by dividing the number of registered 

unemployed by this number we obtain a pseudo-rate of unemployment at 

provincial level that will be taken as our regressor    . 

 

The parameters in (2) will be estimated by the GCE program described in 

equations (4) to (6). The equal supporting vectors for the   parameter has 

been set as (0.75 ,1, 1.25) with    . This indicates that in absence of 

additional information, we would expect the pseudo-rate of unemployment 



8 

 

(   ) to be equal to the actual but unobservable rate (   ), although it could 

vary by 25% around this central point. The idiosyncratic term     is assumed 

to have a more complex structure, containing a quadratic trend (  and   ) 

and a dummy for each quarter ( ) as: 

             
      ;         ;          8 

 

And    ,     and     are parameter to be estimated. The specific supporting 

vectors for this set of parameters has been set as wide as (-1 ,0, 1). Finally, 

for the error terms the support with     values has been chosen again, 

now applying the three-sigma rule with uniform a priori weights. The a 

priori probability distributions taken for all the coefficients are uniform as 

well, so the CGE estimation becomes a GME program.  

 

A comparison between the actual and the estimated rates is possible and the 

(unweighted) mean deviation in percentage for the whole set of 50 provinces 

along the 20 quarters from 2008 to 2012 is reported in Table 1. Additionally, 

Figure 1 summarizes this information by plotting the simple mean of the 

errors only for the fifteen most populated provinces in Spain: 

<<Insert Table 1 about here>> 

<<Insert Figure 1 about here>> 

As a first indicator of the accuracy of the GME inference, the error in the 

estimation of unemployment rates a NUTS-III level seem to be low. 

Considering the largest provinces according to their population size, the 

errors oscillate between    , with the exception of the provinces of Malaga 

and Coruña, where these are slightly larger. In general, the larger errors 

are concentrated in the provinces with a high concentration of agriculture 

activities (Almeria or Jaén, for example) and most of them are concentrated 

in the southern regions of Spain (mainly in Andalusia). A possible 

explanation for this spatial pattern is that in such provinces the information 
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contained in the registers of unemployed and affiliated workers are less 

reliable than for the average of the country. 

  

4. Concluding remarks.  

In this paper an Entropy-based approach with to Ecological Inference (EI) 

with distributionally weighted regressions (WR) and spatial heterogeneity of 

parameters is formulated throughout a real data application. The results 

observed suggest that a DWR based on a GCE-GME estimator can be useful 

to recover geographically disaggregated indicator of labor markets, since the 

deviations between the estimates and the actual values in our empirical 

application are moderate in most cases. 
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Figure 1. Mean deviation 2008-2012 (%): estimates - actual 

unemployment rates, fifteen most populated provinces  
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Table 1. Mean deviation 2008-2012 (%): estimates - actual 

unemployment rates 

Province Error Province Error 

Madrid 2.35% Navarra 1.71% 

Barcelona 0.80% Castellon -2.38% 

Valencia -0.20% Cantabria 3.00% 

Alicante 2.86% Valladolid 2.10% 

Sevilla -1.63% Ciudad Real 0.76% 

Malaga -3.32% Huelva -6.55% 

Murcia -2.87% Leon 2.02% 

Cádiz 2.64% Lleida -0.42% 

Biscay -0.73% Caceres -0.39% 

Coruña 4.05% Albacete 0.38% 

Balearic Island -2.71% Burgos 0.45% 

Las Palmas -1.66% Salamanca 3.51% 

Asturias 1.97% Lugo 3.70% 

Tenerife 0.79% Ourense 4.83% 

Zaragoza -0.40% La Rioja 0.08% 

Pontevedra 2.52% Alava 1.02% 

Granada -6.04% Guadalajara 2.18% 

Tarragona -0.93% Huesca 0.54% 

Cordoba -6.15% Cuenca -0.03% 

Girona -4.31% Zamora 2.20% 

Gipuzkoa 5.40% Avila -0.39% 

Toledo 1.64% Palencia 0.36% 

Almeria -8.10% Segovia -0.21% 

Badajoz 0.02% Teruel 1.01% 

Jaen -7.98% Soria -0.19% 

 

 

 

 


