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Abstract: 

The contribution of the stock of public capital to the economic growth has been a topic that has 
generated some debate in the recent literature. The usual way of obtaining empirical evidence of 
the productivity of public infrastructures is by estimating an aggregate production function, as 
suggested by Aschauer (1989). In his work he found some evidence that public infrastructure 
investments enhanced private productivity. This result was later either confirmed or rejected in 
other subsequent papers (see Sturm et al. 1998, for a survey). The work of Boarnet (1998) 
triggered even more the discussion to the field. His results showed that productivity gains realized 
by infrastructure investment were partially offset by productivity losses in neighboring locations. 
The argument given was that public infrastructure investment in one location can draw resources 
(and therefore production) away from other locations since «it enhances the comparative 
advantage of that location relative to other places». Our argument is that the estimates obtained 
from a production function could be seriously affected by the presence of multicollinearity. 
Several authors (Ai and Cassou, 1997; Vijverberg, Vijverberg and Gamble,1997) have shown that 
regional aggregate data are characterized by strong multicollinearity. Entropy Econometrics (EE) 
provides a rigorous but operationally simple method to deal with samples affected by collinearity 
problems. The objective of the present paper is to compare the results of a standard Least Squares 
estimation with fixed regional effects with an EE approach when estimating public infrastructure 
spillovers in the presence of strong multicollinearity in the data. We do this in the framework of a 
Cobb-Douglas production function using a panel dataset of Spanish provinces for the period 1995-
2006.  
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1. Introduction 

The present paper deals with the quantification of spatial spillovers from public 
transport infrastructures, which has received much attention in the literature since is a 
crucial issue for the policy makers. Infrastructures productivity is usually measured by 
specifying an aggregate production function where the endowment of public capital is 
considered as an input. The production function approach was first used by Aschauer 
(1989), being the Cobb-Douglas function a very common functional form, where functions 
like the following are specified at an aggregate level: 

 

௜ܻ௧ = ௜௧ܮ௜௧ܣ
ఏಽܭ௜௧

ఏ಼ܩ௜௧
ఏಸ

 1 

in which y stands for value added, A is a measure of total factor productivity, K 
indicates the stock of physical capital, L denotes employment, G is the stock of public 
infrastructures, t is the time index and i is the unit index. The potential effects of some 
type spatial spillovers were also considered in previous studies, and the previous function 
is extended by including as additional factor the stock of infrastructures in other locations. 
The previous production function is transformed into: 

  

௜ܻ௧ = ௜௧ܮ௜௧ܣ
ఏಽܭ௜௧

ఏ಼ܩ௜௧
ఏಸܩܫ௜௧

ఏ಺ಸ
 2 

where IG stands for the stock of “indirect” public infrastructures in other regions.  

Although policy makers usually expect from public infrastructure to increase 
productivity and foster economic growth, finding empirical evidence of these positive 
effects has proven to be a difficult task. Aschauer’s (1989) original results suggested that 
public investment in infrastructure increases private productivity. This hypothesis was 
later confirmed by some authors, but rejected by others (see a survey in Sturm et al., 
1998). 

There has been a great deal of discussion about the role played by the spatial 
spillovers generated by public infrastructures. This topic was addressed in Holtz-Eakin and 
Schwartz (1995), Kelejian and Robinson (1997), and Cohen and Morrison (2002) for the 
case of road infrastructure in the United States.  Some of these studies found that the 
spillover effects were not important. The paper by Boarnet (1998) went a step beyond 
finding that they were significantly negative. 

In the theoretical model that Boarnet develops, productivity gains realized by 
infrastructure investment can be potentially offset by losses in neighboring locations. 
Losses arise because public infrastructure investment in one location can draw resources 
(and therefore production) away from other locations since «it enhances the comparative 
advantage of that location relative to other places».  He tested his model with data from 
Californian counties from 1969 to 1988 under different criteria to define the set of 
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neighbor locations. Although the results depend to some extent on this criterion, he found 
in general significantly negative spillovers. 

The purpose of this paper is to check is this result could be determined by ill-
conditioned data set, with high collinearity between the explanatory variables. Several 
authors (Ai and Cassou, 1997; Vijverberg, et al., 1997) have shown that regional aggregate 
data are characterized by strong multicollinearity, which usually increases the variability of 
the parameter estimates. In this paper, with a real data set of Spanish provinces, we 
reproduced the model estimated by Boarnet for the Californian counties using two 
different estimation strategies. One is the one employed by Boarnet himself and the other 
is a Generalized Maximum Entropy (GME) estimator. This alternative estimator provides a 
rigorous but operationally simple method to deal with prior information (Marsh and 
Mittelhammer, 2004) that alleviates the collinearity problems. 

The paper is organized in four more sections. In section 2 we describe the data set 
used for the analysis and the results obtained by applying the same estimation strategy as 
in Boarnet (1998). Section 3 introduces the general basis of the GME estimation 
technique, whereas Section 4 compares the results of the proposed GME estimator with 
the previous ones. Finally, section 5 concludes. 

 

2. Estimating productivity of transport infrastructures for the Spanish provinces 
(1995-2006) 

The main objective of this section will be to apply the same estimation strategy as 
in the paper by Boarnet (1998) to the set of 47 Spanish inland provinces (we exclude the 
Canary and Balearic Island in our analysis). The regression model to be estimated is a 
transformation of (2) into logarithms like: 

 

ln	( ௜ܻ௧) = ln	(ܣ௜௧) + ௅ߠ ln(ܮ௜௧) + ௄ߠ ln(ܭ௜௧) + ீߠ ln(ܩ௜௧) + ூீߠ ln(ܩܫ௜௧) 3 

 

The dependent variable in the regression will be the annual data on GDP at 
province level available from the National Statistical Spanish Institute (INE) from 1995 to 
2006. For this same period, the Valencian Institute of Economic Research (IVIE) 
constructed series of labor (L), physical private capital (K) and stock of public 
infrastructures for transport (G) for the Spanish provinces.1  

The stock of public capital in other regions (IG୧୲) is obtained as a weighted average 
of the stock of public infrastructure in other locations,  

 

                                                        
1 See http://www.ivie.es/banco/banco.php?idioma=EN for details. These transport infrastructures are 
composed basically by roads, highways ad railways. 
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௜௧ܩܫ = ෍ݓ௜௝ܩ௝௧

ே

௝ஷ௜
 4 

In the original paper by Boarnet, different alternatives for the weighting matrix W 
are specified.  In this paper we only focus in those that try to capture the similarities 
between locations, giving larger weights to regions that are more similar. The general 
definition of these weights is: 

 

௜௝ݓ =
หݔ௜ − ିଵ	௝หݔ

∑ ൣหݔ௜ − ே	ିଵ൧	௝หݔ
௝ୀଵ

  

 

Depending on the specific characteristic included in variable x୧, the specification of 
the weighting matrix will be different. In the same fashion as Boarnet, the regional 
indicators chosen with this purpose were: 

 
 ࢖࢕࢖ࢃ ௜=population density in 2000 (people by km2)ݔ

 ࢉ࢔࢏ࢃ ௜=income per capita in 2000  (thousands of Euros)ݔ

௖௢௡ࢃ ௜= proportion of workers in construction in 2000ݔ  

 ࢘ࢋ࢙ࢃ ௜=proportion of workers in services with an university degree in 2000ݔ

 

The matrices defined as above try to replicate the same ideas as in Boarnet. For 
example,  W୮୭୮and W୧୬ୡ  are identically specified. However, in the definition of Wୡ୭୬ we 
account for the great weight that the construction industry had in Spain in the period 
under study.2  Furthermore, due to the lack of appropriate data, matrix Wୱୣ୰ is only a 
proxy of the original definition, which was based in the proportion of workers in finance, 
insurance and real estate industries. 

Following Holtz-Eakin and Schwartz (1995), equation ¡Error! No se encuentra el 
origen de la referencia. is transformed into an equation in differences to the initial year in 
order to capture the long-term relationships between the variables, provided that period t 
is sufficiently far from the initial period.  In the papers by Holtz-Eakin and Schwartz (1995) 
and Boarnet (1998), a span of 6 years is considered as a sufficiently long difference. 
Consequently, differences in our analysis are formed by subtracting the initial year 1995 to 
all the periods from 2000 to 2006. The final equation to be estimated is: 

 

                                                        
2 In the original paper the proportion of workers in the manufacturing sector was used instead. 
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ln൫ܻ̇௜௧൯ = ௧ߛ + ௅ߠ ݈݊൫̇ܮ௜௧൯+ ௄ߠ ݈݊൫̇ܭ௜௧൯ + ீߠ ݈݊൫̇ܩ௜௧൯ + ூீߠ ݈݊൫ܩ̇ܫ௜௧൯ 5 

 

where the dots denote differences to the initial period and the γ୲ are year-specific 
dummies for each t=2000,…,2006. A suggested in Holtz-Eakin and Schwartz (1995) this 
equation is estimated by generalized least squares (GLS) to correct for autocorrelation in 
the disturbances. The following table summarizes the results obtained: 

Table 1. GLS estimates for the Spanish provinces under different W matrices 

 (A) (B) (C) (D) 
Variable ࢖࢕࢖ࢃ ࢔࢕ࢉࢃ ࢉ࢔࢏ࢃ   ࢘ࢋ࢙ࢃ 

Labor (L) 0.496** 0.479** 0.498** 0.496** 

Private capital stock (K) 0.106** 0.116** 0.104** 0.105** 

Public infrastructures stock (G) 0.140** 0.163** 0.138** 0.137** 

Transport infrastructures stock  in neighbor 

regions (IG) 
0.027 -0.159** -0.041 0.030 

N 329 329 329 329 
R2 

0.914 0.917 0.915 0.914 

** indicates that the estimates are significant at 5% level.  
 

The results in Table 1 are in line with the estimates reported in Boarnet (1998). In 
brief, we hardly find evidence of any positive spillover from transport infrastructures in 
other regions. Under the different specification of the weighting matrix in columns A, C, 
and D; we found positive but insignificant spillovers of transport infrastructure. In column 
B, on the other hand, we found a significant result but negative, which would be an 
indication of the effect of infrastructures on regions with similar characteristics (income): 
it enhances competitive advantage on some location, which turns it into a more attractive 
destination for mobile factors, which draws resources away from other regions and 
reduces their productivity. 

Even when this could be a plausible explanation for these empirical evidences, we 
question about if these results could be largely conditioned by the data set. Samples 
affected by collinearity problems lead to high variability in the estimates, as pointed out in 
Ai and Cassou (1997) or Vijverberg et al. (1997). This could be the case of our specific data 
set, which would mean that the estimates are misleading. In order to explore this 
possibility, several indicators of collinearity between the stock of infrastructures in other 
regions and the rest of inputs have been computed. Table 2 summarizes the figures 
obtained: 
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Table 2. Indicators of collinearity between IG with the other inputs 

 Linear correlation of  (IG) with: 
VIFIG ࣁ 

Specification of 	ࢃ L K G 
 30.093 15.505 0.544 0.432 0.337 ࢖࢕࢖ࢃ

 22.695 10.308 0.676 0.450 0.168 ࢉ࢔࢏ࢃ

 ௖௢௡ 0.370 0.490 0.472 10.701 24.949ࢃ

 23.226 10.530 0.595 0.467 0.327 ࢘ࢋ࢙ࢃ

 

The first three columns show the linear correlation coefficient between factor IG 
with the rest of the inputs, which are in general larger for the cases of K and G. Even when 
they are moderate, they are not a proper diagnostics of collinearity problems. There are 
two standard ways of detecting if the sample is affected by collinearity. One is the 
Variance Inflation Vectors (VIF), which aims to quantify how much the variance of an 
estimated regression coefficient is increased because of collinearity. Usually a cut-off 
value of 10 is taken as a signal of collinearity problems affecting the estimate of this 
regressor. In the fourth column of Table 2 we can see that under all the specification of 
matrix W considered this is the case.  

Additionally, the fifth column in Table 2 reports the Condition Number (η) as a 
global indicator (affecting all the explanatory variables) of collinearity problems. The 
condition number was proposed by Belsley, Kuh and Welsch (1980) and is defined as the 
squared root of the maximum and minimum eigenvalue of the matrix has been obtained 
as: 

  

ߟ = ඨ
߰௠௔௫

߰௠௜௡   

 
Usually, condition numbers larger than 20 are considered as a clear signal of huge 
collinearity. In the dataset analyzed the condition number is again higher than these 
reference values. 

Since the estimates of the coefficient of IG could be potentially affected by 
multicollinearity in the sample, the next step will be to estimate equation (5) using an 
alternative estimator that provides a solution to this ill-conditioned sample. The estimator 
proposed in this paper is the Generalized Maximum Entropy (GME) estimator, which is  
briefly described in the next section. More extensive introductions can be found in Kapur 
and Kesavan (1993) and Golan et al. (1996). 
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3. The Maximum Entropy approach and the GME estimator: an introduction  

The essential property of the ME principle is that it chooses the ‘most uncertain’, 
‘most uniform’ or ‘least information-requiring’ distribution for the estimate of a 
parameter, provided that it agrees with the data observed. This is fundamentally different 
from a more classical estimation approach, in which several assumptions on the 
distribution of the error term must be taken for granted. The main idea is that a random 
variable (such as an estimator) can take on different M possible values with unknown 
probabilities. The final objective will be to estimate this target probability distribution p. 
Following the formulation proposed by Shannon (1948), the entropy of this distribution, 
E(p), is: 

 

Max
࢖

(࢖)ܧ = −෍ ௠݌

ெ

௠ୀଵ

 6 (௠݌)݈݊

 

The entropy function E measures the ‘uncertainty’ of the outcomes of the event. 
This function reaches its maximum when p has a uniform distribution. On the other 
extreme, this function takes a value of zero (no uncertainty) when the probability of one 
of the outcomes goes to one. If some information about the variable (for example, 
observations on the dependent and independent variables) is available, it can be used as 
constraints in a linear programming model aimed at maximizing (6). Each piece of 
information will lead to an update of p, similarly to the Bayesian approach. In the linear 
regression framework, the estimator of a coefficient is found by computing its expected 
value given p. In situations in which the number of observations is not large enough to 
apply classical econometrics or, alternatively, the sample is ill-conditioned by problems 
such collinearity, this approach can be used to obtain robust estimates of unknown 
parameters. Standard errors (required to judge the statistical significance of the point 
estimates) can be obtained as well.   

The underlying idea of the ME methodology can be applied for estimating the 
parameters of general linear models, which leads us to the so-called Generalized 
Maximum Entropy (GME). Let us suppose a variable y that depends on H explanatory 
variables x୦: 

 

࢟ = ࢼࢄ + ࣕ 7 

Where y is a (T × 1) vector of observations for y, X is a (T × H) matrix of 
observations for the x୦ variables, β is the (H × 1) vector of unknown parameters 
β = (βଵ, … ,βୌ) to be estimated, and ϵ is a (T × 1) vector with the random term of the 
linear model. Each β୦ is assumed to be a discrete random variable. We assume that there 
is some information about its M ≥ 2 possible realizations. This information is included for 
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the estimation by means of a support vector bᇱ = (bଵ , … , b୑) with corresponding 
probabilities p′୦ = (p୦ଵ, … , p୦୑). The vector b is based on the researcher’s a priori belief 
about the likely values of the parameter.3 For the sake of convenient exposition, it will be 
assumed that the M values are the same for every parameter, although this assumption 
can easily be relaxed. Now, vector  can be written as:  

ࢼ = ൥
ଵߚ
⋮
ுߚ
൩ = ࡼ࡮ = ቎

′࢈ 0
0 ′࢈

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ ′࢈

቏ ቎

૚࢖
૛࢖
⋮
ࡴ࢖

቏ 8 

 

Where B and P have dimensions (H × HM) and (HM × 1) respectively. Now, the 
value of each parameter β୦ is given by the following expression: 

 

௛ߚ = ࢎ࢖	′࢈ = ෍ ܾ௠

ெ

௠ୀଵ

;௛௠݌ 	∀ℎ = 1, …  9 ܪ,

For the random term, a similar approach is followed. Oppositely to other 
estimation techniques, GME does not require rigid assumptions about a specific 
probability distribution function of the stochastic component, but it still is necessary to 
make some assumptions. ϵ is assumed to have mean E[ϵ] = 0 and a finite covariance 
matrix. Basically, we represent our uncertainty about the realizations of vector ϵ treating 
each element ϵ୲ as a discrete random variable with J ≥ 2 possible outcomes contained in 
a convex set v′ = ൛vଵ, … , v୎ൟ, which for the sake of simplicity is assumed as common for all 
the ϵ୲. We also assume that these possible realizations are symmetric around zero 
(−vଵ = v୎). The traditional way of fixing the upper and lower limits of this set is to apply 
the three-sigma rule (see Pukelsheim, 1994). Under these conditions, vector ϵ can be 
defined as: 

ࣕ = ൥
߳ଵ
⋮
்߳
൩ = ࢁࢂ = ቎

′࢜ 0
0 ′࢜

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ ′࢜

቏ ቎

૚࢛
૛࢛
⋮
ࢀ࢛

቏ 10 

 

and the value of the random term for an observation t equals: 

߳௧ = ࢚࢛	′࢜ = ෍ݒ௝

௃

௝ୀଵ

;௧௝ݑ ݐ∀	 = 1, … ,ܶ 11 

                                                        
3 Golan, Judge and Miller (1996, chapter 8) pay attention to the consequences of choices concerning the 
elements of the vector b. 
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Consequently, model (7) can be transformed into: 

࢟ = ࢖࡮ࢄ +   ࢛ࢂ

 

So we need also to estimate the elements of matrix U (denoted by u෤୲୨) and the 
estimation problem for the general linear model (7) is transformed into the estimation of 
H + T probability distributions. For this estimation, the GME problem is written in the 
following terms: 

Max
ࢁ,ࡼ

(ࢁ,ࡼ)ܧ = −෍ ෍ ௛௠݌

ெ

௠ୀଵ

ு

௛ୀଵ

(௛௠݌)݈݊ −෍෍ݑ௧௝

௃

௝ୀଵ

்

௧ୀଵ

݈݊൫ݑ௧௝൯ 12 

subject to:  

௧ݕ = ෍ ෍ ܾ௠݌௛௠

ெ

௠ୀଵ

௛ݔ + ෍ݒ௝

௃

௝ୀଵ

	;௧௝ݑ
ு

௛ୀଵ

ݐ∀	 = 1, … , ܶ 13 

෍ ௛௠݌ = 1
ெ

௠ୀଵ

; 	∀ℎ = 1, …  14 ܪ,

෍ݑ௧௝ = 1
௃

௝ୀଵ

; ݐ∀	 = 1, … ,ܶ 15 

 

The restrictions in (13) ensure that the posterior probability distributions of the 
estimates and the errors are compatible with the observations. The equations in (14) and 
(15) are just normalization constraints.4  

The large sample properties of the GME estimators are analyzed in Golan, Judge 
and Miller (1996; chapter 6). GME estimators are shown to be consistent and 
asymptotically normal. These authors analyze also the small sample properties using 
Monte Carlo simulation. They compare numerically the GME estimators to traditional 
least squares and maximum likelihood estimators. Their results show a good performance 
in terms of the accuracy of the estimates. 

                                                        
4 This GME estimation procedure can be seen as a particular case of the r Generalized Cross Entropy (GCE) 
principle (or alternatively the GCE can be considered as generalization of the GME procedure). The GCE 
approach uses as point of departure a non-necessarily uniform probability distribution ࢗ, and the target is 
to minimize the Kullback-Leibler divergence between ࢖ and ࢗ. The solutions of both approaches are the 
same when the a priori probability distribution contained in ࢗ is uniform. In other words, the ME solutions 
are obtained by minimizing the Kullback-Leibler divergence between the unknown ݌௛௠ and the a priori  
௛௠ݍ	 = ଵ

ெ
	∀݉ = 1, . .   .ܯ,
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In order to do inference in the GME approach, the procedure suggested in Fraser 
(2000) or Golan, Perloff and Shen (2001) can be followed. Under some assumptions on the 
behavior of model y = Xβ+ ϵ	 that guarantee the consistency and asymptotical normality 
of the estimator, the distribution of the estimates follows β෠ → N[β,σෝଶ(X′X)ିଵ], where σෝଶ 
is a diagonal matrix with a typical element: 

ࢎෝ૛࣌ = ௘ଶߪ ቆ
௕ଶߪ

௕ଶߪ + ௩ଶߪ
ቇ ,∀ℎ = 1, …  16 ;ܪ,

 

where ߪ௘ଶ = ቂ ଵ
்ିு

ቃ∑ ݁̂௧ଶ்
௧ୀଵ ; being ݁̂௧ = ∑ ෤௧௝ݑ௝ݒ

௃
௝ୀଵ  and: 

௕ଶߪ = ෍ ܾ௛௠ଶ ෤௛௠݌

ெ

௠ୀଵ

− ൭෍ ܾ௛௠݌෤௛௠

ெ

௠ୀଵ

൱

ଶ

 17a 

௩ଶߪ = ෍෍ݒ௝ଶݑ෤௧௝

௃

௝ୀଵ

்

௧ୀଵ

− ቌ෍෍ݒ௝ݑ෤௧௝

௃

௝ୀଵ

்

௧ୀଵ

ቍ

ଶ

 18b 

 

Hence, it is possible to estimate the variance of GME estimators and obtain the t-

ratios as ஒ෡

ට୚ୟො୰(ஒ෡)
. Note that the structure of the variance of the estimators lead to smaller 

variances than in the case of LS regression, given that (18b) includes the term σ୴ଶ which is 
always non-negative. 

 

4. Re-estimating productivity of public infrastructure with GME 

In this section, equation (5) is estimated again for the case of the Spanish 
provinces between 1995 and 2006, but now applying the GME estimator. If we get the 
same results as in Table 1, this would be a signal of non-significantly positive or eventually 
negative contributions of regional spillovers from transport infrastructures. Oppositely, if 
the GME estimates are different from those obtained previously, this would indicate that 
cast some doubts on the previous conclusions.  

The application of the entropy-based estimation procedure proposed in this paper 
requires specifying some supports for the set of parameters and for the errors. Given that 
we estimate elasticities, the bound of 1 in absolute value seems natural. For all the 
parameters of the model we have considered the same support vector b with 3 points 
(−1,0, 1). Note that this imply we are assuming that, in principle, all the elasticities are 
expected to be zero (if we had no observations at all in the sample this would be the 
solution). Moreover, the inclusion of negative values in the supporting vectors allows 
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negative estimates. The usual three-sigma rule applies for specifying the supporting 
vectors for the error terms in all the cases. 

The following table summarizes the results obtained by the GME approach under 
the same different specifications of the weighting matrix: 

Table 3. GME estimates for the Spanish provinces under different W matrices 

 (A) (B) (C) (D) 
Variable ࢉ࢔࢏ࢃ ࢖࢕࢖ࢃ  ࢘ࢋ࢙ࢃ ࢔࢕ࢉࢃ 

Labor (L) 0.476** 0.488** 0.481** 0.478** 

Private capital stock (K) 0.133** 0.125** 0.125** 0.124** 

Public infrastructures stock (G) 0.169** 0.178** 0.176** 0.156** 

Transport infrastructures stock  

in neighbor regions (IG) 
0.195** 0.018** 0.115** 0.162** 

N 329 329 329 329 
Pseudo-R2 

0.911 0.911 0.910 0.909 

** indicates that the estimates are significant at 5% level. The pseudo-R2 is obtained from the variance of 
the errors of the model as suggested in Arnd et al. (2002). 

 

The GME estimator used above highlight the differences between classical 
econometrics and the application of the ME principle. If the sample is affected by 
collinearity, the estimates tend to present high variability and are less precise. Goldberger 
(1991, p. 246) discusses the similarities between collinearity in regression analysis with 
small sample problems in a univariate population. In other words, he sees multicollinearity 
as a problem of lack of enough information in the sample to estimate the parameters of a 
model. The ME approach can alleviate this problem by introducing additional information 
(contained, for example, in the supporting vectors of the parameters).   

This could be the case of the results on Table 1, where a standard GLS estimator 
was applied. The GME estimates in Table 3 tell a completely different story compared with 
those in Table 1, suggesting now that there is no evidence of negative spillovers under any 
of the possible specifications of matrix W. On the contrary, these estimates indicate the 
presence of significant positive spatial spillovers from transport infrastructure for the case 
of the Spanish provinces. 

 

5. Conclusions 

In this paper, we have explored the use of maximum entropy estimation for 
empirical analysis when multicollinearity is an issue. This problem is relatively common 
when estimating Cobb-Douglas production functions with aggregate data in which public 
capital is included as an input. The key element of the estimation by maximum entropy is 
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the introduction of prior information on parameter values. From data of the Spanish 
provinces between 1995 and 2006, we replicate the estimation strategy followed in the 
paper by Boarnet (1998), finding no evidence of positive regional spillovers from public 
infrastructure. In the sample we detected the presence of collinearity problems that could 
be ill-conditioning the dataset and affecting the estimates.  

Although the results obtained with the GME estimation need a detailed analysis of 
sensitivity, the methodology appears as a useful procedure to gather empirical evidence 
when the use of more common econometric methods is impeded or precluded by 
multicollinearity. Due to multicollinearity, standard estimators fail to provide evidence of 
positive spillovers from public capital while estimating the model by GME suggests quite 
strong evidence of this positive effect. 
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