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Abstract: 

Regional input-output tables are usually not constructed from survey data but 
are estimated. From known information about the row and column margins, the cells 
of the matrix are estimated using as a priori information either a regional matrix from 
a past period (updating) or a contemporaneous input-output table from the same time 
period (regionalization). This paper proposes the use of a composite Cross-Entropy 
approach that allows for introducing a mixture of both types of a priori information. An 
empirical application is included, where a regional input-output for Asturias (Spain) is 
estimated with this method and the result is analyzed and compared with other more 
traditional estimation techniques. 
  



1. Introduction 

The input-output modelling at a regional scale is a topic that has gained a lot of 
attention in the last decades, given the huge number potential applications of such 
models (including regional SAM’s and CGE models) for economic researchers and 
policy makers. The well-known problem is that the compilation of the information 
required to build a survey-based input-output tables is extremely expensive and time-
consuming for the statistical agencies, which causes an important lag between the 
compilation of the information in the surveys and the publication of the regional table. 
Therefore, the use of some non-survey method for estimating regional IO tables is 
becoming more and more popular for input-output users.  

Basically, the non-survey techniques for obtaining a regional IO table consist in 
taking as point of departure an initial IO table, which is assumed to be similar to the 
table we want to estimate, together with known information on the row and column 
margins of the actual regional IO table. The basic idea of the estimation process is to 
choose as solution the table that, fulfilling the constraints imposed by the known 
information, is the closest to the prior matrix according to some divergence criterion. 
One of the most used adjusting procedures is the Cross-Entropy (CE) technique, which 
is based on the Kullback-Leibler divergence criterion. This adjusting technique has 
been proven to have an equivalent solution to the popular RAS scaling algorithm (for 
example, McDougall, 1999), although some authors claim that the CE procedure is 
preferable to some other alternatives because it allows for the inclusion of a wide 
range of initial information to be used efficiently in the estimation process (Robinson 
et al. 2001).  

This paper explores from a new approach the role played by the initial 
information in the CE-based estimation process. Traditionally, the adjusting problem 
takes as point of departure either a regional matrix from a past period (updating) or a 
contemporaneous IO table from the same time period (regionalizing)1. The discussion 
on the characteristics of the different techniques of adjusting have attracted much 
attention in the literature (see, to name but a few of examples, Mello and Teixeira, 
1993; Jackson, 1998; Gilchrist and StLouis, 1999; Jalili, 2000; Jackson and Murray, 
2004; Oosterhaven et al., 2008, or Bonfiglio and Chelli, 2008 ). The novelty of our 
proposal is that it considers the possibility of including several initial matrices in the 
estimation process of a regional IO table, instead of choosing one of them.  

The paper is organized in the following sections. Section 2 presents the basis of 
the CE solution to the estimation problem of a matrix with unknown cells but with 
information on its margins. In section 3, the details of the composite CE technique 
proposed in this paper is introduced. Section 4 shows a numerical MonteCarlo 
experiment where the performance of the proposed method is compared with other 
competing techniques. In Section 5 an empirical application with a real-world example 
is included, where the IO table for Asturias (a region of Spain) is estimated. Finally, 
section 6 concludes the paper. 

 

                                                
1 The same choice has to be made also with the RAS algorithm. 



2. The CE solution for the matrix balancing problem  

We will base our explanations on the matrix-balancing problem depicted in 
Golan (2006, page 105), where the goal is to fill the (unknown) cells of a matrix of 
dimension using the information that is contained in the aggregate data of the row and 
column sums. Graphically, the point of departure of our problem is a matrix like Table 
1. 

Table 1: Known and unknown data in a matrix balancing problem. 

푧11 푧1푗 푧1푀 푧1· 

…

푧푖1 푧푖푗 푧푖1 푧푖· 

…

푧푁1 푧푁푗 푧푁푀 푧푁· 

푧·1 푧·푗 푧·푀  

The 푧  cells of the matrix are the unknown quantities we would like to 
estimate (shaded in grey), where the aggregates ∑ 푧 = 푧 ·, ∑ 푧 = 푧· , 
and ∑ ∑ 푧 = 푧 are known. This is a familiar situation in the context of regional 
IO tables, where is very usual to have aggregate information  
(intermediate inputs and outputs per industry) earlier than the flows. 

Note that the 푧  elements can be expressed as sets of (column) probability 
distributions, simply dividing the quantities of the matrix by the corresponding column 
sums 푧· . In such a case, the previous matrix can be rewritten in terms of a new 
matrix 푷 that is composed by a set of M probability distributions (Table 2). 

 

 

 

 

 

 



Table 2: The matrix balancing problem in terms of probabilities. 

푝11 푝1푗 푝1푀 푦1 

…

푝푖1 푝푖푗 푝푖푀 푦푖 

…

푝푁1 푝푁푗 푝푁푀 푦푁 

푣1 푣푗 푣푀  

  

Where the 푝 ′푠 are defined as the proportions 
·

, and the new row and 

column margins as 푣 = ·   and 푦 = · respectively. Consequently, the followings 

equalities are fulfilled by the 푝  elements2: 

푝 = 1 ; ∀푗 = 1, … ,푀 (1) 

푝 푣 = 푦 ;  ∀푖 = 1, … ,푁 (2) 

These two sets of equations reflect all we know about the elements of 
matrix 푷. Equation (2) shows the cross-relationship between the (unknown) 푝 ′푠 in 
the matrix and the (known) sums of each row and column. Additionally, equation (1) 
indicates that the 푝 ′푠 can be viewed as (column) probability distributions. Note that 
we have only 푁 + 푀 pieces of information to estimate the 푁 × 푀   elements of matrix 
푷, which makes the problem ill-posed.  

 

The solution to this type of problems can be obtained by minimizing a 
divergence measure with a prior probability matrix 푸 subject to the set of constraints 
(1) and (2). This is called a Cross-Entropy (CE) problem, which can be written in the 
following terms: 

Min
푷
퐷(푷‖푸) = 푝 푙푛

푝
푞  

(
3) 

                                                
2 Note that in such a case, these 푝 elements can be seen as conditional probabilities to each 
column. 



Subject to the same restrictions given by the set of equations () and (). The 
divergence measure 퐷(푷‖푸) is the Kullback-Liebler entropy divergence between the 
posterior and prior distributions. The Lagrangian function for the CE problem is: 

퐿 = 퐷(푷‖푸) +  푦 − 푝 푣 + 휇 1 − 푝  
(

4) 

And the solutions are: 

푝 =
푞 푒푥푝  푣

∑ 푞 푒푥푝  푣
;  ∀푖 = 1, …푁; 푗 = 1, …푀 

(
5) 

 

The CE estimation procedure can be seen as an extension of the Maximum 
Entropy (ME) principle (or alternatively the ME can be considered as a particular case 
of the CE procedure), given that the solutions of both approaches are the same when 
the 푀 a priori probability distribution contained in 푸 are all uniform.3 It is well-known 
that depending on the choice made when specifying 푸, the general matrix adjusting 
problem can be posed as an updating (if we take as prior a previous regional IO table 
푸풓) or a regionalizing problem (if the national IO table 푸풏 contemporaneous to the 
regional table we want to estimate is our prior).4 In some cases there is no room for 
this choice, simply because only one of these tow priors is available. But it may well be 
that for one specific period and region we can both use as prior matrices 푸풓 or 푸풏. 
This situation is becoming more and more frequent in countries with long tradition in 
building survey regional IO tables. 

 

3. A composite CE method: the DWP estimation technique 

The above sketched procedure can be extended in order to develop a more 
flexible estimator that allows for including in the estimation process both prior 
matrices 푸풓 and 푸풏. Related to the Bayesian Method of Moments (BMOM, see 
Zellner, 1996, 1997), the technique has been proposed in Golan (2001) as data-based 
method of estimation that uses both sample and non-sample information in 
determining a basis for coefficient reduction and extraneous variable identification. In 
other words, this technique allows for shrinking the coefficient of the explanatory 
variables that can be classified as irrelevant in a linear model. Another recent empirical 
application of this method can also be found in Bernadini (2008).  

 

                                                
3 In other words, the ME solutions are obtained by minimizing the Kullback-Liebler 
divergence 퐷(푷‖푸) between the unknown 푝  and the probabilities 푞 = ; ∀푖 = 1, …푁; 푗 =
1, …푀. 
4 See Hewings (1984) for a detailed discussion on the role played by the prior information in 
such estimation problems. 



Our objective in the context of a matrix balancing problem will be to identify 
which of the two priors would be preferable for each industry contained in the IO table 
to be estimated and simultaneously to obtain estimated matrices with a good 
performance. For the sake of simplicity, let us assume that we want to estimate a 
symmetric industry-by-industry regional IO table (푁 = 푀). If we denote with 풒풓 and 
풒풏 the regional and national a priori (column) distributions respectively, the objective 
proposed can be achieved by modifying the previous CE program in the following way: 

 

Min
푷,푷휸

퐷(푷,푷휸‖푸풓,푸풏,푸휸) = 1 − 훾 푝 푙푛
푝
푞  

+ 훾 푝 푙푛
푝
푞  

+ 푝 푙푛
푝
푞

 

(
6) 

subject to:  

푝 푣 = 푦  ∀푖 = 1, … ,푁 (
7) 

푝 = 1 ; ∀푗 = 1, … ,푀 
(

8) 

푝 = 1 ; ∀푗 = 1, … ,푀 
(

9) 

 

The 훾  parameters are estimated simultaneously with the unknown 
probabilities 푝  of the matrix. Each 훾  measures the weight given to the national prior 
풒풏 for each industry and it is defined as 훾 = ∑ 푏 푝 , where 푏 = 0 and 푏 = 1 

are respectively the lower and upper bound defined as the support of these 
parameters (note that this implies that 0 ≤ 훾 ≤ 1; ∀푗 = 1, . . ,푀). The a priori 

probability distributions fixed for them are uniform 풒풉
휸 = ; ∀푗 = 1, . . ,푀 . 

 

To understand the logic of this data-weighted prior (DWP) estimator an 
explanation on the objective function of the previous minimization program is 
required. Note that equation (6) is divided in three terms. The first term quantifies the 
divergence between the recovered probabilities and the a priori probabilities where a 
previous regional table is chosen as prior, being this divergence weighted by 1 − 훾  



for each industry. On the contrary, the second element of (6) measures the divergence 
with a simultaneous national prior and it s weighted by 훾 . The third element in (6) 
relates to the Kullback divergence of the weighting parameters 훾 . 

 

The solutions of this minimization program are: 

푝 =
푞 ⁄ 푒푥푝 퐴  푣

∑ 푞 ⁄ 푒푥푝 퐴  푣
;  ∀푖 = 1, … ,푁; 푗 = 1, … ,푀

 

10) 

 

Where: 

훾 = ∑ 푏 푝 ,

퐴 = 1 − 훾 훾 − 1 − 훾 ∑ 푞 푙푛 푞 + 훾   

 

and   are the Lagrangian multipliers associated with restrictions (7). The properties of 

this DWP estimator in the context of classical linear regression models haven tested in 

Golan (2001).5 

 

Simultaneously to the estimation of the 푝  cells of the matrix, the DWP 
estimator discriminates for each industry j between the two priors considered. The 
proposed estimation strategy provides estimates of the weighting parameters 훾 , 
obtained as: 

훾 = ∑ 푏 푝 , (11) 

 

which can be used as a tool for this purpose. Note that as 훾 → 0 the regional 
prior 풒풓 gains weight for industry j and the estimates approach those of the CE 
updating process. On the contrary, large values of 훾 , the CE estimation (regionalizing) 
with a national prior 풒풏 takes over. Consequently, relatively large values of 훾  
(훾 ≥ 0.5) will be an indication of an industry j characterized by a high weight of the 
national prior. In other words, in this industry would be preferable to use a 

                                                
5 Under some mild assumptions (see Golan 2001, page 177) the consistency and asymptotic normality of 
the DWP estimates can be ensured. Additionally, these assumptions also guarantee that the 
approximate variances of the DWP estimator is lower than the approximate variance of the generalized 
CE estimator, which in turn is lower than the approximate variance of a ML-LS estimator (see Golan, 
2001, page 179). 



regionalizing adjustment of the contemporaneous national IO table rather than 
updating a previous regional IO table. On the contrary, comparatively small values of 
훾  (when 훾 < 0.5) are a signal of an industry j where the updating process should be 
preferred. 

 

4. Testing the DWP estimation technique with numerical 

experiments 

In order to test the performance of the proposed estimation technique, we 
have carried out a numerical simulation exercise where the DWP estimation is 
compared with a more traditional adjusting process where only one prior matrix is 
considered. 

In the experiment we have fixed a target matrix 풁 of interindustry flows with 
dimension 30 × 30 where the only known information is the column and row margins. 
This matrix has been fixed as the actual industry-by-industry symmetric table for the 
region of Asturias (Spain) in 2005, published by SADEI (the regional statistical agency of 
Asturias). Moreover, the matrix 풁 has been transformed into a matrix of column 
coefficients 푷 to be estimated from the information contained in vectors 풗 and y. We 
also defined several a priori matrices 푸 to be used in the estimation of 푷. Firstly, we 
have generated a matrix 푸풓 that plays the role of a previous matrix for this region. The 
values of this matrix have been obtained as 푞 = 푝 ∙ 푢 ; where 푢  is a perturbation 
term that behaves as  푢 ~푁(1,휎) and 휎 = 0.1. 

 

4.1. First experiment 

Additionally to this a priori matrix, we have also generated a matrix 푸  that is 
assumed to be a national matrix contemporaneous to our regional target matrix 푷. The 
elements of 푸  have been obtained as 푞 = 푝 ∙ 푢 , being 푢 ~푁(1,2휎). Note 
that is clear that the prior contained in matrix 푸풓 is closer to matrix 푷 than the prior 
contained in 푸 . In this scenario we have estimated matrix 푷 by three different ways: 
updating the previous regional matrix 푸풓, regionalizing the national matrix 푸  and 
using the proposed DWP estimation technique that takes both matrices as possible 
priors. These three estimation strategies correspond respectively with the 
minimization of the three following divergence measures: 

 

Min
푷
퐷(푷‖푸풓) = 푝 푙푛

푝
푞  (12a) 

Min
푷
퐷(푷‖푸 ) = 푝 푙푛

푝
푞

 (12b) 



Min
푷,푷휸

퐷(푷,푷휸‖푸풓,푸풏,푸휸) = 1 − 훾 푝 푙푛
푝
푞  

+ 훾 푝 푙푛
푝
푞

 

+ 푝 푙푛
푝
푞

 

(12c) 

 

subject to the same type of constraints explained before. To evaluate the 
performance of these estimation approaches, 1,000 trials have been carried out and 
we have computed the average of a measure of overall deviation between the target 
matrix and the estimates. Specifically, we obtained the mean absolute error 
percentage (MAPE), given that is frequently used in the studies that evaluate the 
performance of updating IO tables. It is defined as: 

 

푀퐴푃퐸 = 100
푧 − 푧̂

∑ ∑ 푧
 (13) 

 

where the 푧̂  elements denote the estimated flows. To extend this evaluation, 
we also obtained the deviation MAPE measure between the actual and estimated 

technical coefficients 푎 , where 푎 = 푧
푥  and 푥  is the total output of industry j in 

the target IO matrix. These output values are assumed as known in the experiment and 
they have been fixed as the actual output values of the regional IO table of Asturias in 
2005. Finally, we paid also attention to the accuracy in the estimation of the output 
multipliers, obtaining the MAPE for the 푙  elements of the matrix L, being 푳 =
[푰 − 푨] ퟏ the inverse of Leontief.6 The following table summarizes the results 
obtained: 

 

  

                                                
6 We also follow the usual procedure of not taking into account the element on the main 
diagonal of L in this comparison, given that these cells cannot be smaller than one by 
definition. 



Table 3. First experiment: average MAPE for flows, technical coefficients and 
output multipliers 

MAPE 

 Technique (prior used) 푧  푎  푙  

Regionalizing (푸 ) 10.56 3.85 9.56 
Updating (푸 ) 5.42 1.91 4.87 
DWP (푸 , 푸 ) 6.00 2.15 5.48 

 

Not surprisingly, the best results in this experiment are those obtained by the 
updating approach: given that the matrix taken as prior is closer to the target matrix 
than the matrix chosen in the regionalizing approach, the accuracy of the former 
technique is larger. It is important to note that, in such a situation, there are not gains 
by using the proposed DWP estimation. This is given by the fact that there is one a 
priori matrix that in all the cases (industries) is closer to the target matrix than the 
other alternative. Irrespectively on the industry, it would be always better to use as 
prior the previous regional table 푸  than the competing national prior 푸  and it 
would be also preferable to any possible combination of 푸  and 푸 . The weighting 
parameters 훾 , estimated by the DWP technique are not very helpful either in this case 

 

Figure 1. Average estimates of the weighting parameters 휸풋 in the first 
experiment 

 

 

The figure shows that the average estimates are around the threshold value 0.5 
under the conditions specified in this first experiment. This is a signal that points out 
that the DWP technique does not manage to discriminate clearly between the two 
options for priors. All in all, the results obtained from this first experiment seems to 
suggest, finally, that the DWP option does not perform comparatively better than an 
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adjusting technique with only one prior if one of the initial matrix considered is always 
preferable than the other.  

 

4.2. Second experiment 

In the second numerical experiment we try to replicate other type of situations, 
where the use of a specific prior is not preferable to other alternative in all the cases. 
This happens in situations where the researcher wants to estimate a regional IO table 
characterized by having, in the one hand, part of its industries with in the (column) 
coefficients that present a similar distribution to a previous regional table. However, in 
the other hand, some other industries are more similar to a contemporaneous national 
IO table.  

 

Keeping the rest of conditions identical to the first one, in this second 
experiment we introduce a new national a priori 푸 ; where the elements have been 
defined as: 

 

푞 =
푞 = 푈[0,0.02];  푗1 = 1, … ,15                                                                            
푞 = 푝 ∙ 푢  and 푢 ~푁(1,0.5휎);  푗2 = 16, … ,30.                                    

 

 

In other words, this new a priori matrix is characterized by having one half of 
their columns (from industry number 1 to number 15) completely random; which 
means that in these cases it would be preferable taking 푸  as initial matrix. However, 
for the other one half of the industries (number 16 to 30) it happens the opposite, 
given that the distribution is closer to the target matrix than the prior 푸 . Under these 
new conditions we repeated the simulation and computed the MAPE measures for the 
flows, technical coefficients and output multipliers. Table 4 reports the average results 
we found in the 1,000 trials: 

 

Table 4. Second experiment: average MAPE for flows, technical coefficients 
and output multipliers 

MAPE 

 Technique (prior used) 푧  푎  푙  

Regionalizing (푸 ) 60.38 22.41 54.87 
Updating (푸 ) 5.42 1.91 4.87 
DWP (푸 , 푸 ) 4.84 1.82 4.72 

 

Now we observe some interesting results. Firstly, we can see how using only 
the new national IO table as prior for the estimation of our target matrix would 
increase the deviation between estimates and the actual values. The erratic behaviour 
we specified for 15 out of the 30 industries contained in 푸  causes this result. But 



this does not mean that all the information contained in this matrix should be 
neglected, because in the other one half of the industries the column coefficients 
distribute closer to the target matrix than the regional prior 푸 . If we incorporate both 
matrices of a priori information in the adjusting process by using the DWP estimation, 
we let the data speak for themselves and choose the most appropriate prior for each 
industry, which in the end obtains smaller deviation measures.  

 

The average results obtained for the weighting parameters 훾  also show a clear 
picture of how the DWP estimation works: 

 

Figure 2. Average estimates of the weighting parameters 휸풋 in the second 
experiment 

 
   

Note that now we have a complete different picture form the results obtained 
in the first experiment. Under the conditions described in this second experiment, the 
DWP estimation technique allows for identifying the industries where the distribution 
of the coefficients should be taken from one of the initial matrices (industries from 1 
to 15). Even when the a priori expected value is 훾 =0.5, the information included into 
the estimation process leads the DWP technique to give much bigger weights to one of 
the priors in this first group of industries. Note also that for the second group 
(industries from 16 to 30) this information does not seem to be enough to obtain 
estimates of 훾  significantly larger than 0.5, although the overall results in terms of our 
MAPE deviation measure is satisfactory. 

 

5. An empirical application: estimating the regional IO table for 

Asturias, 2005 

As a complement to the numerical simulation made in the previous section, this 
section presents an empirical application of the proposed DWP technique and 
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compares the results obtained with other competing techniques. For this purpose, we 
took again the industry-by-industry symmetric IO table for the region of Asturias 
(Spain) in 2005. Assuming that the only known information of this matrix are the row 
and column margins (intermediate outputs and inputs respectively) and the vector x of 
total output, we try to estimate the inter-industry flows matrix Z, the matrix A of 
technical coefficients and the Leontief inverse L. For this purpose, we will apply and 
adjusting process to obtain the column-coefficients matrix P from different initial 
matrices, all they having the same industry classification at 30 branches. Details of the 
industry classification are given in the Appendix. 

 

Specifically, we considered the symmetric Spanish IO table for 2005 (푸 , 
obtained from the Spanish Statistical Institute INE), and two previous regional matrices 
for Asturias in 1995 and 2000 (푸 and 푸 , respectively) published by SADEI. The 
specification of these two previous regional tables requires an explanation: if we only 
had considered as prior the regional table for 2000, we would have a situation as the 
one described in the first numerical experiment (because the coefficients in 2005 are 
probably close to those of the 2000 table). We opted for including the 1995 table as 
initial matrix to illustrate how the DWP technique works in a case of a large time lag 
between the published regional tables. Consequently, it is probable that the regional 
economy experiences a structural change in part of their industries between 1995 and 
2005. In such a situation, taking the 1995 table as prior would not be the best option 
for all the industries, because the contemporaneous national IO table for 2005 could 
be preferable as initial distribution in the estimation of the coefficients for some 
industries (the situation studied in the second experiment).  

The following table summarizes the results obtained in this study case: 

 

Table 5. MAPE for flows, technical coefficients and output multipliers for 
several estimation strategies 

MAPE 

 Technique (prior used) 푧  푎  푙  

Regionalizing (푸 ) 36.35 15.08 38.41 
Updating1 (푸 ) 24.47 9.61 24.72 
DWP1 (푸 , 푸 ) 25.35 10.50 27.17 
Updating2 (푸 ) 38.53 16.07 39.88 
DWP2 (푸 , 푸 ) 25.45 10.58 27.39 

 

In the estimation problem studied here, we have available a previous regional 
IO table sufficiently close to the target matrix, so this option is always preferable to 
any other of the possible initial matrices. In line with the results obtained in the first 
numerical experiment on the previous section, the proposed DWP technique does not 
offer clear gains from combining a priori matrices when we have such a scenario where 
one of them is clearly preferable to the other (comparing the DWP1 with the 
Updating1 results).  



 

However, it could happen that we had not a recent previous regional IO table 
to update. This is relatively frequent for the case of the Spanish regions, where the lag 
between the published IO regional tables is sometimes 10 years or even more (in 
Catalonia, for example, the two most recent regional tables have been published in 
1987 and 2001). What would happen for the case of Asturias if we did not have the 
table of 2000, but we had the 1995 IO table instead? We can observe in the table how 
a “pure” updating yields larger deviations than the regionalizing strategy. In such a 
case, it is possible that some industries had experienced a structural change between 
1995 and 2005 (but some others had not) and now the DWP technique can be helpful. 
Note that in this case we can detect an improvement in the overall error measures 
(compare the DWP2 with the Updating2 MAPE values). 

 

The estimates of the weighting parameters 훾  from the DWP estimations in the 
two cases are also in line with the results obtained in the Monte Carlo simulations:   

Figure 3. Estimates of the weighting parameters 휸풋 in the empirical 
application 

 

 

 

We can see how the DWP estimator discriminates more clearly between the 
national and the regional priors in the case where the national table for 2005 is 
combined with the regional table for 1995 (DWP2): the technique manages to identify 
some industries (industry 2, Extractive and mining activities; or in particular industry 
25, Computer services) where the contemporaneous national prior is specially favored 
in the estimation process. Oppositely, there are other industries where the previous 
regional a priori matrix of 1995 is clearly preferred (industry 12, Steel; and industry 17, 
Energy). This discrimination is almost inexistent when the DWP combine the national 
2005 table with the regional 2000 matrix.  
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6. Concluding remarks 

Regional input-output modelling often requires using some non-survey method 
for estimating IO tables at this scale. Traditionally, these techniques take an initial IO 
table, similar to the table to be estimated, which is somehow adjusted to fulfil the 
constraints imposed by the known information, and at the same time is the closest to 
the prior matrix according to some divergence criterion (the CE technique is a well-
known example of such a procedure). The adjusting problem takes as point of 
departure either a regional matrix from a past period (updating) or a 
contemporaneous IO table from the same time period (regionalizing). 

 

This paper, however, suggests a new approach of dealing with this initial 
information. Based in a previous work by Golan (2001), the so-called DWP estimation 
strategy considers the possibility of including several a priori matrices in the estimation 
process of a regional IO table, instead of choosing only one of them. By means of a 
Monte Carlo simulation, the performance of the proposed DWP method is compared 
with other adjusting techniques. The findings of this experiment suggest that the 
proposal can be useful in situation where none of the available prior matrices is 
preferable to the other for all the cases (industries). The empirical application with a 
real-world example, where the IO table for Asturias (a region of Spain) is estimated, 
seems to confirm this conclusion. 
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Appendix: industry classification 

Industry number Industry description 
ind1 Agriculture 
ind2 Extractive and mining activities 
ind3 Mineral products 
ind4 Food, beverages and tobacco 
ind5 Textile manufactures 
ind6 Wood and cork 
ind7 Paper, publishing and editing industries 
ind8 Coke and fuels 
ind9 Chemistry industry 
ind10 Rubber and plastics 
ind11 Other non-metallic products 
ind12 Steel 
ind13 Machinery and mechanical equipment 
ind14 Office, optical and electronic products 
ind15 Transport equipment 
ind16 Manufacturing n.e.c. 
ind17 Energy 
ind18 Building materials and construction 
ind19 Commerce 
ind20 Hotels and restaurants 
ind21 Transport services 
ind22 Post and telecommunications 
ind23 Banking and insurance services 
ind24 Renting and real estate services 
ind25 Computer services 
ind26 Services to companies 
ind27 Public administration 
ind28 Education services 
ind29 Health  
Ind30 Social services n.e.c. 

 

 


